

HANDBUCH PRELIMINARY

Version: 1.0

Datum: 05/07/2024

GEMAC MOTUS® GREENLINE XE DIGITAL

XE6XP360-C

XE6XP360-0

XE6XP360-J

REVISIONSÜBERSICHT

Datum	Revision	Änderungen
05/07/24	1.0	Erste Version

© Copyright 2024 GEMAC Chemnitz GmbH

Unangekündigte Änderungen vorbehalten.

Wir arbeiten ständig an der Weiterentwicklung unserer Produkte. Änderungen des Lieferumfangs in Form, Ausstattung und Technik behalten wir uns vor. Aus den Angaben, Abbildungen und Beschreibungen dieser Dokumentation können keine Ansprüche abgeleitet werden. Jegliche Vervielfältigung, Weiterverarbeitung und Übersetzung dieses Dokumentes sowie Auszügen daraus bedürfen der schriftlichen Genehmigung durch die GEMAC Chemnitz GmbH. Alle Rechte nach dem Gesetz über das Urheberrecht bleiben der GEMAC Chemnitz GmbH ausdrücklich vorbehalten.

Hinweis:

Zur Verwendung des Sensors und zum Verständnis dieses Handbuchs sind allgemeine Kenntnisse über das Feldbussystem CAN-Bus, CANopen bzw. SAE J1939 notwendig.

INHALTSVERZEICHNIS

1.1 Eingangskontrolle	1
1.2 Bestimmungsgemäßer Gebrauch	1
1.3 Bestimmungswidriger Gebrauch	1
1.4 Anforderungen an die Qualifikation des Personals	1
2 Übersicht	2
2.1 Eigenschaften	2
2.2 Einsatzgebiete	2
Technische Daten	3
4 Orientierung der Messachsen	5
5 Montage	6
5.1 Befestigung	6
5.2 Anordnung der Befestigungsbohrungen und Lage der Anlagekante	
6 Anschluss	8
6.1 Allgemeine Informationen zum Anschluss	8
6.2 Steckverbinder-Belegung	8
6.3 Interne Beschaltung	8
6.4 Bus-Abschlusswiderstand	8
7 Funktionsbeschreibung	0
runktionsbeschielbung	9
7.1 Tiefpassfilter	9
7.2 Sensorfusionsfilter	
7.2.1 Funktionsweise	10
7.2.2 Erweiterte Konfiguration des Sensorfusionsfilters	10
7.2.3 Driftkompensation der Drehrate	11
8 Funktionsbeschreibung CAN Schnittstelle	12
8.1 Nullpunkteinstellung	12
8.2 Digitalfilter	12
8.3 Sensorfusionsfilter	12
8.4 Aufbau der CAN-Telegramme	12
8.4.1 Datenteil im CAN-Telegramm	12
8.4.2 Statusbyte (STATUS)	
8.5 Boot-Up-Nachricht	
8.6 Geräteparameter lesen/schreiben	14

8.6.1	Set-Parameter-Telegramme	14
8.6.2	Reply-Parameter-Telegramme	15
8.7	Standardgeräteparameter	17
8.8	Übertragung des Neigungswinkels (Lotwinkel)	17
8.8.1	Abfragemodus (Polling)	18
8.8.2	Synchroner Modus	18
8.8.3	Zyklischer Modus	18
8.9	Alternative Ausgabeformate	19
8.9.1	Ausgabe der Euler-Winkel	19
8.9.2	Ausgabe der Drehrate (Gyrosensor Rohdaten)	20
8.9.3	Ausgabe der Beschleunigung	20
8.10	Konfiguration des Sensors	20
8.10.1	Zyklischen Modus konfigurieren	20
8.10.2	CAN-Identifier konfigurieren	20
8.10.3	Baudrate konfigurieren	21
8.10.4	Automatische Bus-Off Erholung konfigurieren	21
8.10.5	Grenzfrequenz des Tiefpassfilters konfigurieren	21
8.10.6	Sensorfusion konfigurieren	22
8.10.7	Nullpunktoffset konfigurieren	22
8.10.8	Standardgeräteparameter wiederherstellen	22
8.10.9	Geräteparameter speichern	23
8.10.10	Software-Reset durchführen	23
9	Funktionsbeschreibung CANopen Schnittstelle	24
9.1	Funktionsübersicht	24
9.2	CANopen Struktur	24
9.3	CANopen Gerätemodell	25
9.4	COB-IDs	25
9.5	Netzwerkmanagement: NMT	26
9.6	Prozessdaten: PDO (TPDO1 - TPDO4)	27
9.6.1	PDO Kommunikationsarten	28
9.6.1.1	Individuelle Abfrage (Polling)	28
9.6.1.2	Zyklisches Senden	28
9.6.1.3	Synchronisiertes Senden	28
9.6.1.4	Ereignisgesteuertes Senden bei Winkeländerung (herstellerspezifisch)	29
9.7	Parameterdaten: SDO	29
9.8	Objektverzeichnis	30
9.8.1	Kommunikationsparameter (nach CiA DS-301)	30
9.8.1.1	Fehlerregister (1001h)	34
9.8.1.2	Herstellerstatusregister (1002h)	34
9.8.1.3	Vordefiniertes Fehlerfeld (1003h)	34
9.8.1.4	Parameter speichern (1010h) und wiederherstellen (1011h)	35

9.8.1.5	Transmit PDO - Übertragungstyp (1800h / 1801h / 1802h / 1803h)	35
9.8.2	Herstellerspezifischer Teil	36
9.8.2.1	Automatische Bus-Off Erholung (2002h)	37
9.8.2.2	Tiefpassfiltereinstellungen (3000h)	37
9.8.2.3	TPD01 Senden bei Winkeländerung (3001h)	38
9.8.2.4	Konfiguration der Sensorfusion (3002h)	38
9.8.3	Profilspezifischer Teil (nach CiA DS-410)	38
9.8.3.1	Auflösung (6000h)	39
9.8.3.2	Neigungswert axial (6010h) / Neigungswerte longitudinal und lateral (6010h und 6020	h) 39
9.8.3.3	Betriebsparameter (6011h und 6021h)	39
9.8.3.4	Nullpunkteinstellung für Lotwinkel: Vorgabewert, Offsetwert, Differenzoffsetwert	
	(60x1/2/3h)	40
9.9	Fehlermeldungen: Emergency	40
9.10	Ausfallüberwachung	41
9.10.1	Nodeguarding / Lifeguarding	41
9.10.2	Heartbeat	42
9.11	LSS: Layer Setting Service (nach CiA DSP-305)	42
9.11.1	Einstellung von Node-ID und Baudrate	42
9.12	Automatische Baudratenerkennung (nach CiA AN-801)	43
10	Funktionsbeschreibung SAE J1939 Schnittstelle	44
10.1	Telegrammformat	44
10.2	Gerätename und Adresse	44
10.3	Prozessdaten (Transmit PGNs)	45
10.4	PGN Mapping	49
10.5	Sensor Konfiguration	50
10.5.1	Beispiele SAE J1939 Kommunikation	53
10.5.2	Bedeutung Statusbyte	54
11	Wartung und Kundendienst	55
11.1	Kalibrierung	55
11.2	Kundendienst	55
11.2.1	Rücksendung	55
11.2.2	Support	55
11.2.3	Gewährleistung und Haftungseinschränkung	55
12	Sensorkonfiguration	56
12.1	Neigungssensor-Programmieradapter	56
12.2	PC-Software ISDControl	56
13	Bestellinformationen	58

TABELLENVERZEICHNIS

Tabelle 1: Technische Daten	4
Tabelle 2: M12-Stecker-Belegung CAN-Bus	8
Tabelle 3: Filterauswahl Tiefpassfilter	9
Tabelle 4: Filterauswahl Fusionsfilter	10
Tabelle 5: Erweiterte Konfiguration der Sensorfusion	11
Tabelle 6: Aufbau der CAN-Telegramme	13
Tabelle 7: Statusbyte	13
Tabelle 8: Boot-Up-Nachricht	14
Tabelle 9: Funktionscodes und Parameter der Set-Parameter-Telegramme (Anfrage)	15
Tabelle 10: Funktionscodes und Parameter der Reply-Parameter-Telegramme (Antwort)	17
Tabelle 11: Standardeinstellungen der Geräteparameter	17
Tabelle 12: Abfragetelegramm: Winkelwerte (FSC = 00h)	18
Tabelle 13: Antworttelegramm: Winkelwerte (FSC = 00h)	18
Tabelle 14: Telegramme im zyklischen Modus	19
Tabelle 15: CAN-Identifier	21
Tabelle 16: Standardgeräteparameter wiederherstellen	23
Tabelle 17: Geräteparameter speichern	23
Tabelle 18: Software-Reset durchführen	23
Tabelle 19: Berechnung der COB-IDs nach Pre-Defined Connection Set	26
Tabelle 20: TPD01 Standardmapping	27
Tabelle 21: TPD02 Standardmapping	27
Tabelle 22: TPD03 Standardmapping	27
Tabelle 23: TPD04 Standardmapping	27
Tabelle 24: Mappbare Objekte	28
Tabelle 25: Kommunikationsparameter im Objektverzeichnis	33
Tabelle 26: Fehlerregister (1001h)	34
Tabelle 27: Herstellerstatusregister (1002h)	34
Tabelle 28: Fehlereintrag im vordefinierte Fehlerfeld (1003h)	35
Tabelle 29: Transmit PDO - Übertragungstyp	35
Tabelle 30: Herstellerspezifischer Teil des Objektverzeichnisses	37
Tabelle 31: Filterauswahl	37
Tabelle 32: Profilspezifischer Teil des Objektverzeichnisses	39
Tabelle 33: Betriebsparameter (6011h und 6021h)	39
Tabelle 34: Nullpunkteinstellung	40
Tabelle 35: Emergency Object	40
Tabelle 36: Emergency Error Codes	41
Tabelle 37: Emergency: Manufacturer Specific Error Field	41
Tabelle 38: LSS Baudratenindex nach CiA DSP-305	43
Tabelle 39: Transmit PGN 1 - 61459 Slope Sensor Information	46

Tabellenverzeichnis	preliminary
Tabelle 40: Transmit PGN 2 - 61481 Slope Sensor Information 2	46
Tabelle 41: Transmit PGN 3 - 61482 Angular Rate Information	46
Tabelle 42: Transmit PGN 4 - 61485 Acceleration Sensor	47
Tabelle 43: Transmit PGN 5 - Lotwinkel	47
Tabelle 44: Transmit PGN 6 - Euler Winkel	47
Tabelle 45: Transmit PGN 8 - Beschleunigung	48
Tabelle 46: Transmit PGN 9 - Drehrate	48
Tabelle 47: Transmit PGN 10 - Beschleunigung ungefiltert	48
Fabelle 48: Transmit PGN 11 - Gyro-Winkel	48
Tabelle 49: Status Bits im PGN	49
Fabelle 50: SAE J1939 proprietary B Mapping Signale	49
Tabelle 51: Konfigurationsparameter	53
Tabelle 52: Firmware-Version des Sensors mit Adresse 128 lesen	53
Tabelle 53: Aktivieren der Sensorfusion bei Sensor mit Adresse 128	53
Tabelle 54: Statusbyte	54
Tabelle 55: Bestellinformationen	58

ABBILDUNGSVERZEICHNIS

Abbildung 1: Standardausrichtung für Lotwinkel, Gehäusevariante 4-Loch	5
Abbildung 2: Ausrichtung für Euler-Winkel, Gehäusevariante 2-Loch	5
Abbildung 3: Beschleunigung	5
Abbildung 4: Drehrate	5
Abbildung 5: Gehäuseabmessungen 4-Loch-Variante (Maße in mm)	6
Abbildung 6: Gehäuseabmessungen 4-Loch-Variante (Maße in mm)	7
Abbildung 7: interne Beschaltung	8
Abbildung 8: Impulsantwort der beiden Tiefpassfilter	9
Abbildung 9: Amplitudenverlauf der beiden Tiefpassfilter	10
Abbildung 10: Funktionsweise des zyklischen Modus	19
Abbildung 11: CANopen Struktur	25
Abbildung 12: NMT Zustandsdiagramm	26
Abbildung 13: SDO Protokoll - Zugriff auf Objektverzeichnis	29
Abbildung 14: SAE J1939 CAN-Identifier	44
Abbildung 15: Sensor-Programmieradapter	56
Abbildung 16: PC-Software	57

1 Sicherheitshinweise preliminary

1 Sicherheitshinweise

1.1 Eingangskontrolle

Packen Sie das Gerät sofort nach Entgegennahme sorgfältig aus und überprüfen Sie die Lieferung auf Vollständigkeit. Bei Verdacht auf Transportschäden benachrichtigen Sie den Zusteller innerhalb von 72 Stunden und bewahren Sie die Verpackung zur Begutachtung auf. Der Transport des Gerätes darf nur in der Originalverpackung oder in einer gleichwertigen Verpackung erfolgen.

1.2 Bestimmungsgemäßer Gebrauch

Der GEMAC MOTUS® Greenline XE ist ein Gerät, bestehend aus einem elektronischen Sensor und einer integrierten Auswerteelektronik. Das Gerät ist zum Erfassen von Neigungen in ortsfesten Großanlagen der Industrieautomatisierung sowie beweglichen Maschinen und Verkehrsmitteln zur Personen- und Güterbeförderung wie Land- und Forstmaschinen, Nutzkraftfahrzeugen oder Kran- und Hebetechnik bestimmt.

Die GEMAC Chemnitz GmbH übernimmt keine Haftung für direkte oder indirekte Verluste oder Schäden, die aus der Benutzung des Produkts resultieren. Dies gilt insbesondere für eine andersartige Verwendung des Produkts, die nicht mit dem beabsichtigten Zweck übereinstimmt und die nicht in dieser Dokumentation beschrieben ist.

1.3 Bestimmungswidriger Gebrauch

Der GEMAC MOTUS® Greenline XE ist kein Sicherheitsbauteil gemäß der EG-Maschinenrichtlinie (2006/42/EG) oder der EU-Maschinenverordnung (2023/1230). Er darf nicht in explosionsgefährdeten Bereichen eingesetzt werden. Er ist nicht für Elektrofahrzeuge konzipiert, deren Wiederaufladbares Energiespeichersystem (REESS) über das Stromnetz geladen wird. Alle unter Abschnitt 1.2 "Bestimmungsgemäßer Gebrauch" nicht beschriebenen Verwendungen sind verboten. Die Verwendung von Zubehör, welches nicht ausdrücklich durch die GEMAC Chemnitz GmbH freigegeben wurde, erfolgt auf eigenes Risiko.

1.4 Anforderungen an die Qualifikation des Personals

Nur autorisiertes, geschultes und ausreichend qualifiziertes Personal darf an und mit dem GEMAC MOTUS® Greenline XE arbeiten. Eine Fachkraft erfüllt folgende Punkte:

- Kann eine fachliche Ausbildung sowie zusätzliche Kenntnisse und Erfahrungen bezüglich Betrieb und Bedienung des Sensors und des jeweiligen Einsatzgebietes vorweisen.
- · Kennt die zugehörigen Fachbegriffe und einschlägigen Bestimmungen.
- Kann die ihr übertragenden Arbeiten beurteilen, mögliche Gefahren erkennen und geeignete Sicherheitsmaßnahmen ergreifen.

2 Übersicht preliminary

2 Übersicht

2.1 Eigenschaften

• 6-achsige inertiale Messeinheit aus Beschleunigungs- und Gyrosensor

- · Dynamischer Neigungssensor
 - · Genauigkeit unabhängig vom lokalen Erdschwerefeld durch 3D-Messung
- · Komfortable Parametrierung mit GEMAC-Programmiertool
 - · Intelligenter Sensorfusionsfilter, konfigurierbar auf die Zielanwendung
 - · Parametrierbare Vibrationsunterdrückung
- Hohe Abtastrate und Bandbreite
- Hohe Auflösung (0,01°)
- Hohe statische Genauigkeit unabhängig von der Sensorlage, modellabhängig bis ±0,5°
 - · Angabe enthält bereits die kompensierte Querempfindlichkeit
- Dynamische Genauigkeit bis ±0,8°
 - · Angabe enthält bereits die kompensierte Querempfindlichkeit
- Komfortable CAN-, CANopen oder SAE J1939 Schnittstelle
 - Baudraten von 10 kBit/s bis 1 MBit/s
 - · Automatische Baudratenerkennung
- UV-beständiges, schlagzähes Kunststoffgehäuse
- Geringe Stromaufnahme
- Geeignet für industriellen Einsatz:
 - · Arbeitstemperaturbereich: -40 °C bis +80 °C
 - · Gehäuseschutzart: IP6K6K und IP6K7

Zur Gewährleistung einer hohen Genauigkeit sind die Sensoren werksseitig kalibriert.

Der kompakte und robuste Aufbau macht die Sensoren zu einem geeigneten Winkelmessgerät in rauer Umgebung für die unterschiedlichsten Einsatzfälle in Fahrzeugtechnik und Industrie. Dabei auftretende Beschleunigungen, z.B. bei Bremsvorgängen oder Kurvenfahrten werden durch den integrierten Fusionsfilter zuverlässig gefiltert.

Über die digitale Schnittstelle ist eine einfache Einstellung sämtlicher Parameter möglich.

2.2 Einsatzgebiete

- Land- und forstwirtschaftliche Maschinen
- Baumaschinen
- Kran- und Hebetechnik

3 Technische Daten preliminary

3 Technische Daten

Messbereiche	±00° (Latwinkal) bau 1100	Poll Winkers 2		
Auflösung	±90° (Lotwinkel) bzw. ±180° (Roll-Winkel) ²			
_	0,01			
Statische Genauigkeit (inklusive Querempfindlichkeit)	±0,5°			
Dynamische Genauigkeit (inklusive Querempfindlichkeit)	typisch ±0,8°	typisch ±0,8°		
Dauer der Unterdrückung von Störbe- schleunigungen (konfigurierbar)	100 - 10000 ms			
Temperaturkoeffizient (Nullpunkt)	typ. ±0,02 °/K			
Allgemeine Parameter IMU	Beschleunigungssensor		Gyrosensor	
Messbereich	±2 g		±250 %	
Auflösung	0,488 mg		0,035 %s	
In run bias stability	-		typ. 10 %h	
Angular random walk (ARW)	-		0,4°/√h	
Temperaturkoeffizient (Nullpunkt)	typ. 0,4 mg/K		typ. 0,02 °/s/K	
Allgemeine Parameter				
Abtastrate	200 Hz			
Arbeitstemperatur	-40 °C bis +80 °C			
Figonophofton				
Eigenschaften				
<u>Eigenschaften</u>	XE6xP360-C	XE6xP360-0		XE6xP360-J
	XE6xP360-C CAN 2.0 A und B (11- und 29-Bit-ID) entsprechend ISO 11898-2	XE6xP360-0 CANopen ents CIA DS-301, G CIA DSP-410		XE6xP360-J SAE J1939
Schnittstelle	CAN 2.0 A und B (11- und 29-Bit-ID) entsprechend	CANopen ents CiA DS-301, G CiA DSP-410	Seräteprofil	SAE J1939 125k, 250k Bit/s
Eigenschaften Schnittstelle Datenraten Funktionen	CAN 2.0 A und B (11- und 29-Bit-ID) entsprechend ISO 11898-2 10k, 20k, 50k, 100k, 125k, 21 MBit/s	CANopen ents CIA DS-301, G CIA DSP-410 50k, 500k, 800 nd synchronisier Tiefpassfilter I	eräteprofil Ok Bit/s, ertes Senden, I (kritisch gedän	SAE J1939 125k, 250k Bit/s Automatische Erkennung
Schnittstelle Datenraten Funktionen	CAN 2.0 A und B (11- und 29-Bit-ID) entsprechend ISO 11898-2 10k, 20k, 50k, 100k, 125k, 21 MBit/s Automatische Erkennung Winkelabfrage, zyklisches u Sensorfusionsfilter, digitale	CANopen ents CIA DS-301, G CIA DSP-410 50k, 500k, 800 nd synchronisier Tiefpassfilter I	eräteprofil Ok Bit/s, ertes Senden, I (kritisch gedän	SAE J1939 125k, 250k Bit/s Automatische Erkennun
Schnittstelle Datenraten	CAN 2.0 A und B (11- und 29-Bit-ID) entsprechend ISO 11898-2 10k, 20k, 50k, 100k, 125k, 21 MBit/s Automatische Erkennung Winkelabfrage, zyklisches u Sensorfusionsfilter, digitale	CANopen ents CIA DS-301, G CIA DSP-410 50k, 500k, 800 nd synchronisier Tiefpassfilter I	eräteprofil Ok Bit/s, ertes Senden, I (kritisch gedän	SAE J1939 125k, 250k Bit/s Automatische Erkennun
Schnittstelle Datenraten Funktionen Elektrische Parameter	CAN 2.0 A und B (11- und 29-Bit-ID) entsprechend ISO 11898-2 10k, 20k, 50k, 100k, 125k, 2 1 MBit/s Automatische Erkennung Winkelabfrage, zyklisches u Sensorfusionsfilter, digitale 8.0rdnung), Konfiguration ül	CANopen ents CIA DS-301, G CIA DSP-410 50k, 500k, 800 nd synchronisier Tiefpassfilter I	eräteprofil Ok Bit/s, ertes Senden, I (kritisch gedän	SAE J1939 125k, 250k Bit/s Automatische Erkennun
Schnittstelle Datenraten Funktionen Elektrische Parameter Versorgungsspannung	CAN 2.0 A und B (11- und 29-Bit-ID) entsprechend ISO 11898-2 10k, 20k, 50k, 100k, 125k, 2 1 MBit/s Automatische Erkennung Winkelabfrage, zyklisches u Sensorfusionsfilter, digitale 8.0rdnung), Konfiguration ül	CANopen ents CIA DS-301, G CIA DSP-410 50k, 500k, 800 nd synchronisier Tiefpassfilter I	Seräteprofil Ok Bit/s, ertes Senden, I (kritisch gedän	SAE J1939 125k, 250k Bit/s Automatische Erkennun
Schnittstelle Datenraten Funktionen Elektrische Parameter Versorgungsspannung Stromaufnahme	CAN 2.0 A und B (11- und 29-Bit-ID) entsprechend ISO 11898-2 10k, 20k, 50k, 100k, 125k, 2 1 MBit/s Automatische Erkennung Winkelabfrage, zyklisches u Sensorfusionsfilter, digitale 8.0rdnung), Konfiguration ül	CANopen ents CiA DS-301, G CiA DSP-410 50k, 500k, 800 nd synchronisie Tiefpassfilter (per die digitale	eräteprofil Ok Bit/s, ertes Senden, I (kritisch gedän Schnittstelle	SAE J1939 125k, 250k Bit/s Automatische Erkennun Parametrierung,
Schnittstelle Datenraten Funktionen Elektrische Parameter Versorgungsspannung Stromaufnahme Mechanische Parameter	CAN 2.0 A und B (11- und 29-Bit-ID) entsprechend ISO 11898-2 10k, 20k, 50k, 100k, 125k, 21 MBit/s Automatische Erkennung Winkelabfrage, zyklisches u Sensorfusionsfilter, digitale 8.0rdnung), Konfiguration ül 11 bis 30 V DC ca. 12 mA @ 24 V	CANopen ents CiA DS-301, G CiA DSP-410 50k, 500k, 800 nd synchronisie Tiefpassfilter (per die digitale	eräteprofil Ok Bit/s, ertes Senden, I (kritisch gedän Schnittstelle	SAE J1939 125k, 250k Bit/s Automatische Erkennun Parametrierung,

¹ Alle angegebenen Winkelgenauigkeiten gelten nach einer Einlaufzeit von 10 min bei 25 °C, absolute Kalibriergenauigkeit (bei 25 °C): ±0,05°.

Bis zu 2 Messachsen mit konfigurierbarer Orientierung.

3 Technische Daten preliminary

Zuverlässigkeit nach EN ISO 13849-1 ³		
MTTF	955 Jahre	
MTTFd	1756 Jahre	
CE-Konformität		
Harmonisierungsrechtsvorschriften der Eur	ropäischen Union	
Richtlinie 2014/30/EU	Harmonisierung der Rechtsvorschriften der Mitgliedstaaten über die elektromagnetische Verträglichkeit	
Richtlinie 2011/65/EU	Beschränkung der Verwendung bestimmter gefährlicher Stoffe in Elektro- und Elektronikgeräten	
Harmonisierte Normen		
EN ISO 13766-1:2018 ⁴	Erdbaumaschinen und Baumaschinen - Elektromagnetische Verträglichkeit von Maschinen mit internem elektrischen Bordnetz - Teil 1: Allgemeine EMV-Anforderungen unter typischen EMV-Umgebungsbedingungen (ISO 13766-1:2018)	
EN IEC 63000:2018	Technische Dokumentation zur Beurteilung von Elektro- und Elektronikgeräten hinsichtlich der Beschränkung gefährlicher Stoffe	

Tabelle 1: Technische Daten

٠

Bei diesem Produkt handelt es sich um ein Standardprodukt und kein Sicherheitsbauteil im Sinne der Maschinenrichtlinie oder -verordnung. Die Berechnung bezieht sich auf eine durchschnittliche Umgebungstemperatur von 40 °C und eine Einsatzhäufigkeit von 8760 h/a.

⁴ Es wird von einer Spannungsbegrenzung des Lastabwurfs von 58 V ausgegangen (vgl. ISO 16750-2:2012 Abbildung 9).

4 Orientierung der Messachsen

Der Sensor wird mit den in Abbildung 1 bzw. Abbildung 2 gezeigten Messachsenorientierungen ausgeliefert.



Abbildung 1: Standardausrichtung für Lotwinkel, Gehäusevariante 4-Loch

Abbildung 2: Ausrichtung für Euler-Winkel, Gehäusevariante 2-Loch

Die Beschleunigungs- und Drehraten-Werte werden entsprechend der in Abbildung 3 und Abbildung 4 dargestellten Messachsen ausgegeben.

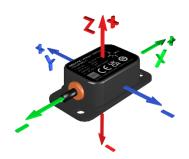


Abbildung 3: Beschleunigung

Abbildung 4: Drehrate

5 Montage preliminary

5 Montage

5.1 Befestigung

Ein Sensor in der 4-Loch-Variante (XExXP360-x) muss mit vier Innensechskantschrauben M4 nach DIN 912 A2 und vier Sechskantmuttern M4 nach DIN 934 verschraubt werden. Ein Sensor in der 2-Loch-Variante (XExZP360-x) muss mit zwei Innensechskantschrauben M5 nach DIN 912 A2 und zwei Sechskantmuttern nach DIN 934 verschraubt werden.

Schraube und Mutter sind jeweils mit einem Drehmoment von 3 Nm so zu verschrauben, dass mindestens ein voller Gewindegang der Schraube aus der Mutter übersteht.

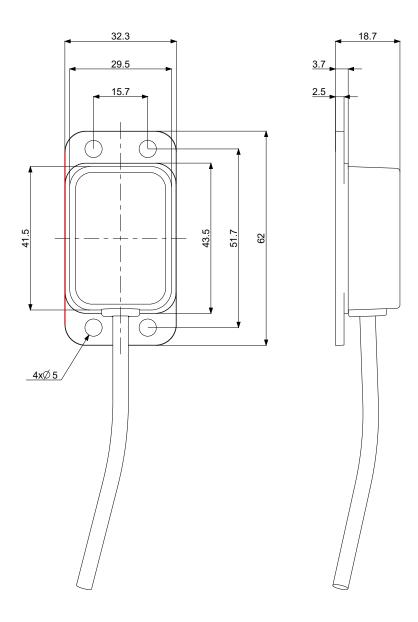


Abbildung 5: Gehäuseabmessungen 4-Loch-Variante (Maße in mm)

5 Montage preliminary

5.2 Anordnung der Befestigungsbohrungen und Lage der Anlagekante

Die Bohrungen zum Verschrauben des Sensors (Abbildung 5 und Abbildung 6) befinden sich in der Grundplatte des Sensors.

Die Anlagekante ist in den Abbildungen rot markiert. Die Messachsen des Sensors sind auf diese Kante parallel bzw. orthogonal ausgerichtet. Weitere Informationen zur Anlagekante finden Sie auf gemac-sensors.com.

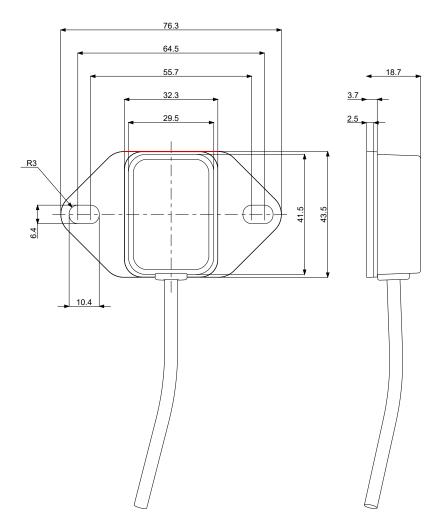


Abbildung 6: Gehäuseabmessungen 2-Loch-Variante (Maße in mm)

6 Anschluss preliminary

6 Anschluss

6.1 Allgemeine Informationen zum Anschluss

Der Sensor ist mit einem Kabelabgang mit 5-poligen Rundstecker M12 (A-kodiert) nach IEC 61076-2-101 ausgestattet.

Es ist ein geschirmtes Anschlusskabel zu verwenden. Der Schirm ist an der Spannungsversorgung auf Masse zu legen.

6.2 Steckverbinder-Belegung

Die Pinbelegung der Anschlüsse entspricht CiA DR-303-1 (Tabelle 2).

Pin	Signal	Belegung
1	CAN_SHLD	Schirm
2	V+	Versorgungsspannung (+24 V)
3	V-	GND / 0 V / V-
4	CAN_H	CAN_H Busleitung
5	CAN_L	CAN_L Busleitung

Tabelle 2: M12-Stecker-Belegung CAN-Bus

6.3 Interne Beschaltung

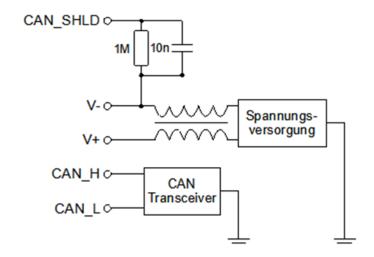


Abbildung 7: interne Beschaltung

6.4 Bus-Abschlusswiderstand

Der Sensor besitzt keinen internen Abschlusswiderstand.

7 Funktionsbeschreibung preliminary

7 Funktionsbeschreibung

7.1 Tiefpassfilter

Der Sensor basiert auf einer indirekten Messung der Neigung aufgrund des Erdschwerefeldes. Externe Beschleunigungen, wie sie durch Vibrationen auftreten können, stören prinzipbedingt die Funktion des Sensors.

Der Sensor bietet die Möglichkeit, den kontinuierlich entstehenden Winkelwert gegenüber externen, störenden Schwingungen unempfindlicher zu machen. Im Sensor stehen zwei Tiefpassfilter zur Verfügung, die entsprechend dem Anwendungsgebiet des Sensors ausgewählt werden können.

Mit Hilfe der parametrierbaren Tiefpassfilter (Butterworth oder kritisch gedämpft) achter Ordnung können parasitäre Schwingungen/Vibrationen bis zu 0,1 Hz unterdrückt werden.

Filter	einstellbarer Frequenzbereich	Einsatzfälle
Butterworth	0,1 bis 25 Hz	statische Neigungsmessung bei hoher Dämpfung gegenüber Vibrationen
Kritisch gedämpft	0,1 bis 8 Hz	Neigungsmessung bei Anwendungen, die einer gewissen Dynamik unterliegen, ohne Überschwingen bei Winkel-ände- rungen bei gleichzeitig guter Dämpfung

Tabelle 3: Filterauswahl Tiefpassfilter

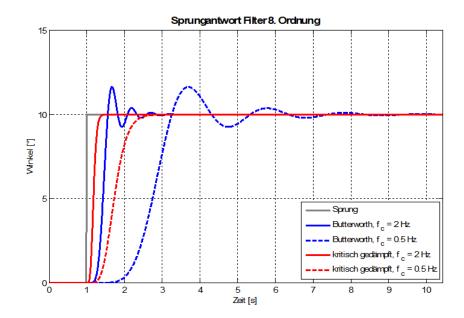


Abbildung 8: Impulsantwort der beiden Tiefpassfilter

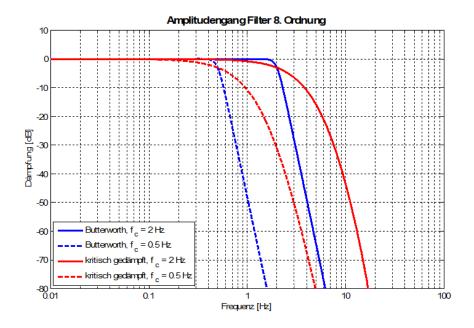


Abbildung 9: Amplitudenverlauf der beiden Tiefpassfilter

7.2 Sensorfusionsfilter

7.2.1 Funktionsweise

Externe Beschleunigungen, die beispielsweise durch Abbremsen oder Kurvenfahrten von Fahrzeugen auftreten, können durch den Tiefpassfilter nicht zuverlässig unterdrückt werden.

Der Sensorfusionsfilter nutzt als Messgröße zusätzlich zum Erdschwerefeld die Drehrateninformation eines Gyroskops. Dadurch können externe Beschleunigungen unterdrückt werden, ohne dass die Winkelinformation einer merklichen Zeitverzögerung unterliegt.

Das für die Sensorfusion genutzte Beschleunigungssignal wird dabei zunächst mit dem im Kapitel 7.1 Tiefpassfilter" beschriebenen Filter vorverarbeitet.

Die Sensorfusion arbeitet standardmäßig mit einer adaptiven Konfiguration, d.h. die Filtereinstellungen werden dynamisch an den aktuellen Bewegungszustand des Sensors angepasst. Dies bewirkt eine optimale Dämpfung von externen Störungen sowohl bei sehr dynamischen Anwendungen als auch in Ruhe.

Filter	Einstellbarer Bereich	Einsatzfälle
Sensorfusion	100 ms bis 10 s	Dynamische Anwendungen, Messungen bei Beschleunigungs-/Bremsvorgängen oder Kurvenfahrten, Messung ohne Zeitverzögerung des Signals

Tabelle 4: Filterauswahl Fusionsfilter

7.2.2 Erweiterte Konfiguration des Sensorfusionsfilters

Das Maß für die Dämpfung externer Beschleunigungen kann angepasst werden (siehe Tabelle 5).

Die Konfiguration kann verwendet werden, um eine Drift der Ausgabewerte bei sehr dynamischen bzw. dauerhaft bewegten Systemen zu vermeiden. Für die kundenspezifische Konfiguration des Sensors auf spezielle Anwendungen wenden Sie sich bitte an GEMAC Chemnitz GmbH.

7 Funktionsbeschreibung preliminary

Konfiguration	Einstellbarer Bereich	Beschreibung
Dämpfungsfaktor	0 bis 20 (default: 17)	0: minimale Dämpfung externer Beschleunigungen bei der Sensorfusion 19: maximale Dämpfung 20: Winkelberechnung erfolgt nur aus Gyrodaten, Warnung: Drift der Ausgabedaten möglich

Tabelle 5: Erweiterte Konfiguration der Sensorfusion

7.2.3 Driftkompensation der Drehrate

Die Ausgabedaten des Gyroskops im Sensor sind offset-behaftet. Um den variablen Offset auszugleichen, ist der Sensor mit einer automatischen Driftkompensation ausgestattet, die im beschleunigungslosen Zustand des Sensors den Offset dynamisch ermittelt. Zusätzlich ist es möglich, die Kompensation von außen durch Befehl zu deaktivieren oder manuell zu triggern. Die Ermittlung des Offsets erfolgt nach Empfang des Befehls innerhalb von 2 Sekunden. Der Sensor muss in dieser Zeit stillstehen.

8 Funktionsbeschreibung CAN Schnittstelle

8.1 Nullpunkteinstellung

Der Nullpunkt des Sensors kann für die Winkelausgabe abgeglichen (parametriert) werden. Damit ist es möglich, die Nulllage im eingebauten Zustand des Sensors festzulegen. Der Sensor besitzt dazu einen Speicher für einen Nullpunktoffset. Hier eingetragene Werte werden bei der Ausgabe des Winkels zum intern gemessenen Winkel addiert.

Soll der Sensor in der aktuellen Lage seinen Nullpunkt erhalten, so muss der aktuell angezeigte Neigungswert negativ als Nullpunktoffset im Sensor eingetragen werden. Der Sensor ist in der Lage diese Art der Nullpunktsetzung selbst auszuführen (Automatische Nullpunktsetzung). Dazu ist ein Telegramm zum Setzen des Nullpunktoffsets **ohne** Parameter (OFX;OFY) zu senden (FSC = 28h;29h, DLC = 1). Der Sensor trägt dann selbständig den gemessenen Winkelwert zum Zeitpunkt des Empfangs des Telegramms als negativen Nullpunktoffset ein.

8.2 Digitalfilter

Die Einstellung der Grenzfrequenz wird mit FSC = 27h (Set Parameter Telegramm) vorgenommen. Dabei sind Werte für FG (Grenzfrequenz) von 100 (= 0,1 Hz) bis 25000 bzw. 8000 (= 25 Hz bzw. 8 Hz) zulässig. Die maximal einstellbare Grenzfrequenz ist vom gewählten Filtertyp abhängig. Über den Wert FT wird der Filtertyp ausgewählt.

8.3 Sensorfusionsfilter

Die Sensorfusion von Beschleunigungssensor und Gyroskop kann mittels FSC = 2Bh (Set Parameter Telegramm) aktiviert und deaktiviert werden. Außerdem kann die Filterlänge für die Sensorfusion eingestellt werden (Wert in ms im Bereich von 10ms bis 10s). Dieser Parameter stellt die maximale Unterdrückungsdauer für von außen einwirkende Störungen ein. Der Sensorfusionsfilter kann unabhängig vom Digitalfilter eingestellt werden.

In der erweiterten Konfiguration können mittels FSC = 2Ch außerdem der Dämpfungsfaktor sowie die dynamische Driftkompensation konfiguriert werden (siehe Kapitel 8.10.6 "Sensorfusion konfigurieren").

8.4 Aufbau der CAN-Telegramme

Für das Lesen bzw. Schreiben der Geräteparameter sowie zum Auslesen der Sensordaten existiert je eine CAN-ID zum Empfangen von Daten/Kommandos und eine zum Senden der Antwort/Bestätigung. Diese werden in einem Permanentspeicher (EEPROM) gespeichert und können frei konfiguriert werden. Dabei werden sowohl CAN 2.0 A (Standard Frame Format) als auch CAN 2.0 B (Extended Frame Format) unterstützt.

8.4.1 Datenteil im CAN-Telegramm

Der Datenteil aller Sende- und Empfangstelegramme enthält immer einen Funktionscode (FSC) und zusätzlich maximal 7 Datenbytes, abhängig vom FSC. Die Länge des Datenteils des CAN-Telegramms ist im DLC

(Data Length Code) festgelegt. Der allgemeine Aufbau des Datenteils im CAN-Telegramm sieht wie folgt aus:

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
FSC	DO/Status	D1	D2	D3	D4	D5	D6

Tabelle 6: Aufbau der CAN-Telegramme

FSC: Function Select Code - Funktionscode. Jedes Telegramm (vom Sensor) enthält immer den

gleichen FSC der vorhergehenden Anfrage als Bestätigung.

D0-D7: Datenbytes, abhängig von Funktionscode

Status: Statusinformationen, die in jedem vom Sensor gesendeten Telegramm enthalten sind (siehe

Kapitel 8.4.2 "Statusbyte (STATUS)").

Telegramme, die an den Sensor gesendet werden, können über die benötigten Datenbytes hinaus weitere Datenbytes enthalten - diese werden nicht ausgewertet. Telegramme, die vom Sensor gesendet werden, enthalten nur die zum Funktionscode definierten Datenbytes.

8.4.2 Statusbyte (STATUS)

Jedes vom Sensor gesendete Telegramm enthält im Byte1 (vgl. Tabelle 6) des CAN-Telegramms den aktuellen Status des Gerätes. Das Statusbyte ist wie folgt aufgebaut:

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
reserviert	Accuracy Warning	reserviert	reserviert	CmdParam Error	EEPROM Error	Autobaud Detection	Default Param

Tabelle 7: Statusbyte

DefaultParam: Standardgeräteparameter sind eingestellt. Dieses Bit wird erst dann zurückgesetzt,

wenn ein Geräteparameter auf einen vom Werksparameter abweichenden Wert geändert wurde. Der Sensor wird mit Standardgeräteparametern ausgeliefert, daher ist dieses Bit standardmäßig gesetzt (siehe Kapitel 8.7 "Standardgeräteparameter").

AutobaudDetection: Die Baudrate ist auf automatische Erkennung gestellt (BR = 0) (siehe Kapitel 8.10.3

"Baudrate konfigurieren").

EEPROMError: Beim Lesen/Schreiben auf den EEPROM ist ein Fehler aufgetreten, z.B. Datenverlust.

Die korrekte Funktion des Sensors ist nicht mehr gewährleistet. Dieses Bit wird durch

Lesen des Statusbytes (Set-Parameter-Telegramm mit FSC = 02h) zurückgesetzt.

CmdParamError: Ein empfangenes Telegramm enthält einen Kommando- oder Parameterfehler (ungül-

tiger FSC, zu wenig Datenbytes, ungültige Werte). Dieses Bit wird durch Lesen des

Statusbytes (Set-Parameter-Telegramm mit FSC = 02h) zurückgesetzt.

AccuracyWarning: Genauigkeitswarnung: Durch Überschreiten der Maximalwerte für Beschleunigung

oder Drehrate ist die Genauigkeit des Sensors eingeschränkt. Dieses Bit wird

automatisch zurückgesetzt, wenn der Sensor wieder unter den spezifizierten Bedingungen arbeitet.

8.5 Boot-Up-Nachricht

Nach einem Geräteneustart (Hardware- oder Software-Reset) sendet der Sensor zweifach eine "Boot-Up"-Nachricht. Damit wird der korrekte Bootvorgang angezeigt und die Set-Parameter-ID (CAN-ID, mit welcher der Sensor parametriert werden kann) mitgeteilt. Dieses Telegramm enthält folgende Informationen:

"Boot-Up"-Nachricht nach Geräteneustart: Reply-Parameter-ID (Standard-ID: 301h)

FSC	D0	D1	D2	D3	D4	D5	D6
FFh	Status	SIDO	SID1	SID2	SID3	SWV0	SWV1

Tabelle 8: Boot-Up-Nachricht

SIDO-3: Set-Parameter-ID (siehe Kapitel 8.6 "Geräteparameter lesen/schreiben")

SWV0-1: Softwareversion; Beispiel: SWV0 = 0x44, SWV1 = 0x03 → Softwareversion v3.44

8.6 Geräteparameter lesen/schreiben

Mit den Set-Parameter-Telegrammen (Anfragetelegramm) können sämtliche Parameter, wie Winkelwerte, CAN-IDs, Baudrate, Zykluszeit, etc. eingestellt bzw. abgefragt werden. Der Sensor bestätigt jedes Set-Parameter-Telegramm mit einem Reply-Parameter-Telegramm (Antworttelegramm).

8.6.1 Set-Parameter-Telegramme

Tabelle 9 zeigt alle zulässigen Funktionscodes und Parameter eines Set-Parameter-Telegramms.

FSC	D0	D1	D2	D3	D4	D5	D6	Beschreibung	
00h	-	-	-	-	-	-	-	Dynamische Winkelwerte im Format Lotwinkel lesen (inkl. Zykluszähler bei zykl. Modus)	
01h	-	-	-	-	-	-	-	Statische Winkelwerte im Format Lotwinkel	esen
02h	-	-	-	-	-	-	-	Status lesen	
03h	-	-	-	-	-	-	-	Produktnummer und Revision lesen	
04h	-	-	-	-	-	-	-	Seriennummer und Softwareversion lesen	
OAh	-	-	-	-	-	-	-	Dynamische Winkelwerte im Format Euler-Winkel lesen	
OBh	-	-	-	-	-	-	-	Statische Winkelwerte im Format Euler-Wink lesen	el
0Ch	-	-	-	-	-	-	-	Beschleunigungsdaten lesen	
0Eh	-	-	-	-	-	-	-	Winkelgeschwindigkeit lesen	
10h	-	-	-	-	-	-	-	Set-Parameter-ID	
11h	-	-	-	-	-	-	-	Reply-Parameter-ID	
12h	-	-	-	-	-	-	-	Reply-Parameter-ID Sync-ID Sync-ID	
13h	-	-	-	-	-	-	-	Baudrate	Ge

FSC	DO	D1	D2	D3	D4	D5	D6	Beschreibung	
14h	-	-	-	-	-	-	-	Automatische Bus-Off Erholung	
15h	-	-	-	-	-	-	-	Zykluszeit	
16h	-	-	-	-	-	-	-	Zyklusmodus	
17h	-	-	-	-	-	-	-	Grenzfrequenz Digitalfilter, Filterauswahl	
18h	-	-	-	-	-	-	-	Nullpunktoffset X	
19h	-	-	-	-	-	-	-	Nullpunktoffset Y	
1Bh	-	-	-	-	-	-	-	Konfiguration Sensorfusion lesen	
1Ch	-	-	-	-	-	-	-	Konfiguration Sensorfusion 2 lesen	
20h	ID0	ID1	ID2	ID3	-	-	-	Set-Parameter-ID*	
21h	ID0	ID1	ID2	ID3	-	-	-	Reply-Parameter-ID*	
22h	ID0	ID1	ID2	ID3	-	-	-	Sync-ID*	
23h	BR	-	-	-	-	-	-	Baudrate*	
24h	ABOR	-	-	-	-	-	-	Automatische Bus-Off Erholung	hreibe
25h	ZYZ0	ZYZ1	-	-	-	-	-	Zykluszeit	er so
26h	ZYM	-	-	-	-	-	-	Zyklusmodus	ramet
27h	FG0	FG1	FT	-	-	-	-	Grenzfrequenz Tiefpassfilter, Filterauswahl	Geräteparameter schreiben
28h	OFX0	0FX1	-	-	-	-	-	Nullpunktoffset X	Ö
29h	OFY0	0FY1	-	-	-	-	-	Nullpunktoffset Y	
2Bh	EN	FL0	FL1	-	-	-	-	Konfiguration Sensorfusionsfilter	
2Ch	0	DG	DF	TDG	-	-	-	Konfiguration Sensorfusionsfilter 2	
40h	'L'	'0'	'A'	'D'	-	-	-	Standard-Geräteparameter laden (Werksparameter)	
50h	'S'	'A'	'V'	'E'	-	-	-	Geräteparameter im EEPROM speichern	
FFh	'R'	'E'	'S'	'E'	'T'	-	-	Software-Reset	
FFh	-	-	-	-	-	-	-	Alive (Bootup)-Telegramm lesen	

Tabelle 9: Funktionscodes und Parameter der Set-Parameter-Telegramme (Anfrage)

8.6.2 Reply-Parameter-Telegramme

Jedes Reply-Parameter-Telegramm enthält als Bestätigung auf ein korrekt empfangenes Set-Parameter-Telegramm den identischen FSC. Im Statusbyte sind ggf. Fehlerbits gesetzt, falls das Set-Parameter-Telegramm unzureichend oder ungültige Parameter enthielt (siehe Kapitel 8.4.2 "Statusbyte (STATUS)"). Der Aufbau der Reply-Parameter-Telegramme in Abhängigkeit des FSC ist in Tabelle 10 ersichtlich.

FSC	D0	D1	D2	D3	D4	D5	D6	Beschreibung
00h	Status	ANGLI	E_X_D	ANGL	E_Y_D	(CI	NT)	Dynamische Winkelwerte im Format Lotwinkel Lesen (inkl. Zykluszähler bei zykl. Modus)

^{*} Änderungen an Kommunikationsparameter wie IDs und Baudrate werden erst nach Neustart aktiv.

FSC	D0	D1	D2	D3	D4	D5	D6	Beschreibung		
01h	Status	ANGL	E_X_S	ANGL	E_Y_S			Statische Winkelwerte im Format Lotwinke	lesen	
02h	Status	-	-	-	-	-	-	Status lesen		
03h	Status	PR0	PR1	PR2	PR3	RV0	RV1	Produktnummer und Revision lesen		
04h	Status	SNO	SN1	SN2	SN3	SWV 0	SWV1	Seriennummer und Softwareversion lesen		
OAh	Status	PITO	CH_D	ROL	.L_D	-	-	Dynamische Winkelwerte im Format Euler-V lesen	Vinkel	
OBh	Status	PITO	CH_S	ROL	L_S			Statische Winkelwerte im Format Euler-Win lesen	kel	
0Ch	Status	AC	C_X	AC	C_Y	AC	C_Z	Beschleunigungsdaten lesen		
0Eh	Status	AR	?_X	AR	R_Y	AF	R_Z	Winkelgeschwindigkeit lesen		
10h	Status	ID0	ID1	ID2	ID3	-	-	Set-Parameter-ID*		
11h	Status	ID0	ID1	ID2	ID3	-	-	Reply-Parameter-ID*		
12h	Status	ID0	ID1	ID2	ID3	-	-	Sync-ID*		
13h	Status	BR	-	-	-	-	-	Baudrate*		
14h	Status	ABOR	-	-	-	-	-	Automatische Bus-Off Erholung	esen	
15h	Status	ZYZ0	ZYZ1	-	-	-	-	Zykluszeit	Geräteparameter lesen	
16h	Status	ZYM	-	-	-	-	-	Zyklusmodus		
17h	Status	FG0	FG1	FT	-	-	-	Grenzfrequenz Digitalfilter, Filterauswahl		
18h	Status	OFO OFXO	0F1 0FX1	-	-	-	-	Nullpunktoffset X	Ğ	
19h	Status	0FY0	0FY1	-	-	-	-	Nullpunktoffset Y		
1Bh	Status	EN	FL0	FL1	-	-	-	Konfiguration Sensorfusion lesen		
1Ch	Status	0	DG	DF	-	-	-	Konfiguration Sensorfusion 2 lesen		
20h	Status	-	-	-	-	-	-	Set-Parameter-ID		
21h	Status	-	-	-	-	-	-	Reply-Parameter-ID		
22h	Status	-	-	-	-	-	-	Sync-ID		
23h	Status	-	-	-	-	-	-	Baudrate		
24h	Status	-	-	-	-	-	-	Automatische Bus-Off Erholung	Geräteparameter setzen	
25h	Status	-	-	-	-	-	-	Zykluszeit	eter s	
26h	Status	-	-	-	-	-	-	Zyklusmodus		
27h	Status	-	-	-	-	-	-	Grenzfrequenz Tiefpassfilter, Filterauswahl		
28h	Status	-	-	-	-	-	-	Nullpunktoffset X		
29h	Status	-	-	-	-	-	-	Nullpunktoffset Y		
2Bh	Status	-	-	-	-	-	-	Konfiguration Sensorfusionsfilter		
2Ch	Status	-	-	-	-	-	-	Konfiguration Sensorfusionsfilter 2		
40h	Status	-	-	-	-	-	-	Standard-Geräteparameter laden		

 $^{^{*}}$ Änderungen an Kommunikationsparameter wie IDs und Baudrate werden erst nach Neustart aktiv.

FSC	D0	D1	D2	D3	D4	D5	D6	Beschreibung
								(Werksparameter)
50h	Status	-	-	-	-	-	-	Geräteparameter im EEPROM speichern
FFh	Status	Set- Pa- ram ID	Set- Pa- ram ID	Set- Pa- ram ID	Set- Pa- ram ID	SWV 0	SWV1	Alive (Bootup)-Telegramm Geräteneustart (2 Telegramme mit FSC = FFh)

Tabelle 10: Funktionscodes und Parameter der Reply-Parameter-Telegramme (Antwort)

8.7 Standardgeräteparameter

Der Sensor wird mit den in Tabelle 11 aufgelisteten Standardeinstellungen der Geräteparameter ausgeliefert. Diese können durch ein Set-Parameter-Telegramm mit FSC = 40h wieder hergestellt werden (siehe 8.6 "Geräteparameter lesen/schreiben").

Parameter	Standard-Wert	Beschreibung
Set-Parameter-ID	300h	CAN 2.0 A Standard Frame
Reply-Parameter-ID	301h	CAN 2.0 A Standard Frame
Sync-ID	100h	CAN 2.0 A Standard Frame
Baudrate (BR)	0	Automatische Baudratenerkennung
Automatische Bus-Off Erholung	0	deaktiviert
Zykluszeit (ZYZ)	250	250 ms
Zyklusmodus (ZYM)	0	deaktiviert
Grenzfrequenz Tiefpassfilter (FG); Filtertyp	5000; 2	5000 mHz = 5 Hz; Filtertyp: kritisch gedämpft
Sensorfusion; Störunterdrückungszeit	1; 5000	Sensorfusion aktiviert, 5000 ms = 5 s
Dynamische Gyro-Offsetkorrektur	1	aktiviert
Dämpfungsfaktor	17	Sensorfusion mit Dämpfungsfaktor 17
Nullpunktoffset	0	Aus

Tabelle 11: Standardeinstellungen der Geräteparameter

Diese Standardeinstellungen werden ebenfalls gesetzt, wenn nach einem Geräteneustart ungültige Geräteparameter aus dem Permanentspeicher gelesen werden. Wurden die Standardeinstellungen wiederhergestellt, wird dies durch das Statusbit STATUS: DefaultParam = 1 angezeigt.

8.8 Übertragung des Neigungswinkels (Lotwinkel)

Für die Übertragung der Winkelwerte unterstützt der Sensor folgende Modi:

- Abfragemodus
- Synchroner Modus
- Zyklischer Modus

Alle drei Modi sind zu jeder Zeit aktiv und gleichzeitig verwendbar. Eine Umschaltung ist nicht notwendig.

8.8.1 Abfragemodus (Polling)

Der Abfragemodus ist immer möglich. Die aktuelle Winkellage des Sensors kann mittels eines Set-Parameter-Telegramms abgefragt werden. Der Sensor antwortet auf dieses Telegramm mit einem Reply-Parameter-Telegramm. Diese beiden Telegramme sind wie folgt aufgebaut:

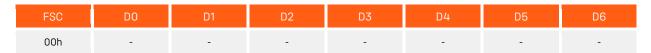


Tabelle 12: Abfragetelegramm: Winkelwerte (FSC = 00h)

FSC	DO	D1	D2	D3	D4	D5	D6
00h	Status	AngleX0	AngleX1	AngleY0	AngleY1	-	-

Tabelle 13: Antworttelegramm: Winkelwerte (FSC = 00h)

AngleX/Y0/1: Winkelwert der X/Y-Achse

Format: 16 Bit vorzeichenbehafteter Wert, Zweierkomplement

Umrechnung: Wert / 100 = Winkelwert

8.8.2 Synchroner Modus

Der synchrone Modus dient dem gleichzeitigen Abfragen der Winkelwerte von mehreren Sensoren. Hierzu dient das Synchronisationstelegramm (Standard: Sync-ID = 100h). Das Sync-Telegramm ist ein Broadcast an alle Busteilnehmer ohne Dateninhalt (DLC = 0). Das Sync-Telegramm wird von einem Busteilnehmer (in der Regel vom Master) zyklisch in festen Intervallen versandt. Der Sensor liest seine aktuellen Winkelwerte bei Empfang der Sync-Nachricht aus und sendet die Daten direkt anschließend, sobald der Bus dies zulässt. Das Antworttelegramm auf ein Sync-Telegramm ist ein Reply-Parameter-Telegramm wie im Abfragemodus (Tabelle 13).

8.8.3 Zyklischer Modus

Der Sensor unterstützt das zyklische Senden der aktuellen Sensordaten nach Ablauf eines bestimmten Zeitintervalls. Dieser Betriebsmodus kann separat (de)aktiviert und das gewünschte Zeitintervall (Zykluszeit) frei parametriert werden. Entsprechend der in Abbildung 10 dargestellten Arbeitsweise, sendet der Sensor in periodischen Abständen (Zykluszeit) die aktuellen Winkelwerte, Beschleunigungen und Drehraten in je einem Reply-Parameter-Telegramm. Das Telegramm für die Winkelwerte enthält einen zusätzlichen Zähler in den nachfolgenden Datenbytes (Tabelle 14). Dieser 16 Bit Zähler wird nach dem Ablauf der eingestellten Zykluszeit erhöht - unabhängig davon, ob das zu sendende Telegramm abgesetzt werden konnte oder nicht. Damit lässt sich auch bei verlorengegangenen Telegrammen eine zeitliche Zuordnung wiederherstellen.

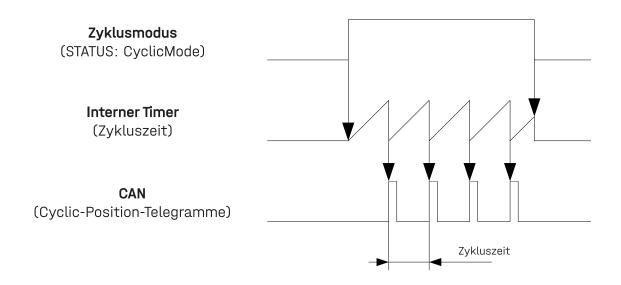


Abbildung 10: Funktionsweise des zyklischen Modus

FSC	DO	D1	D2	D3	D4	D5	D6
00h	Status	AngleX0	AngleX1	AngleY0	AngleY1	CNTO	CNT1
0Ch	Status	ACC_XO	ACC_X1	ACC_YO	ACC_Y1	ACC_ZO	ACC_Z1
ODh	Status	AR_X0	AR_X1	AR_Y0	AR_Y1	AR_Z0	AR_Z1

Tabelle 14: Telegramme im zyklischen Modus

8.9 Alternative Ausgabeformate

8.9.1 Ausgabe der Euler-Winkel

Mittels FSC 0Ah und FSC 0Bh können die Euler-Winkel Pitch und Roll ausgelesen werden. Der Pitch Winkel entspricht der Neigung des Sensors in x-Richtung (Wertebereich ±90°). Der Roll Winkel entspricht der Drehung um die x-Achse des Sensors (Wertebereich ±180°).

Der Wert für die Drehung in der horizontalen Ebene (Yaw oder Heading) wird nicht ausgegeben, da er durch den Beschleunigungssensor nicht detektierbar ist.

Die Genauigkeit von Roll ist im Bereich Pitch ~90° oder Pitch ~-90° herabgesetzt. Bei genau 90° entspricht die Roll Bewegung der Drehung in der horizontalen Bezugsebene (= Yaw, Gimbal-Lock). In diesem Bereich ist die Ausgabe des Roll Winkels undefiniert.

FSC 0Ah gibt dynamische Winkel aus, die durch den parametrierbaren Fusionsfilter (FSC 2Bh) aus gefilterten Beschleunigungs- (FSC 0Ch) und Gyrodaten (FSC 0Eh) errechnet werden. FSC 0Bh gibt statische Winkel aus, die nur auf Grundlage der gefilterten Beschleunigungsdaten errechnet werden.

Format: 16 Bit vorzeichenbehafteter Wert

Umrechnung: Wert/100 = Winkelwert

8.9.2 Ausgabe der Drehrate (Gyrosensor Rohdaten)

Mit dem Set-Parameter Telegramm FSC 0Eh können die Drehraten aller 3 Achsen des Gyrosensors abgefragt werden

Format: 16 Bit vorzeichenbehafteter Wert

Umrechnung: Wert*7/800 = Drehrate in °/s (Wertebereich ±250 °/s)

8.9.3 Ausgabe der Beschleunigung

FSC 0Dh gibt die Beschleunigungswerte aller 3 Achsen des Sensors aus. FSC 0Dh beinhaltet die gefilterten Beschleunigungswerte, die mit dem parametrierbaren Tiefpassfilter (FSC 27h) errechnet werden.

Format: 16 Bit vorzeichenbehafteter Wert

Umrechnung: Wert/16384 = Beschleunigung in g (Wertebereich ±2 g)

8.10 Konfiguration des Sensors

8.10.1 Zyklischen Modus konfigurieren

FSC	DO	D1	D2	D3	D4	D5	D6
25h	ZYZ0	ZYT1	-	-	-	-	-
26h	ZYM						

ZYZ0/1: Zykluszeit in ms

Format: 16 Bit ganzzahliger Wert (1 bis 65.535)

ZYM: Zyklusmodus (de)aktivieren

= 0 → Zyklischer Modus deaktiviert

= 1 → Zyklischer Modus aktiviert

Eine detaillierte Beschreibung zur Verwendung des Zyklischen Modus befindet sich in Kapitel 8.8.3 "Zyklischer Modus".

8.10.2 CAN-Identifier konfigurieren

FSC	DO	D1	D2	D3	D4	D5	D6
20h 21h 22h	ID0	ID1	ID2	ID3			-

IDO-3: CAN-Identifier (ID), 11-Bit-ID (CAN 2.0 A) oder 29-Bit-ID (CAN 2.0 B)

Format: 32-Bit-Wert mit folgendem Aufbau:

Tabelle 15: CAN-Identifier

Beispiel: CAN-ID = 361h (29-Bit-ID, CAN 2.0 B)

IDO = 61h, ID1 = 03h, ID2 = 00h, ID3 = 80h

Wird eine CAN-ID neu gesetzt, darf diese nicht bereits durch einen anderen Telegrammtyp in Verwendung sein. Ist dies dennoch der Fall, so wird das Fehlerbit STATUS:CmdParamError im Reply-Parameter-Telegramm gesetzt und die CAN-ID ignoriert.

8.10.3 Baudrate konfigurieren

FSC	DO	D1	D2	D3	D4	D5	D6
23h	BR	-	-	-	-	-	-

BR: Kennzahl einer Baudrate

Format: 8-Bit ganzzahliger Wert (0 bis 10)

Kennzahlen: 0: Automatische Baudratenerkennung

1: 10 kBit/s 2: 20 kBit/s 3: 50 kBit/s 4: 100 kBit/s 5: 125 kBit/s 6: 250 kBit/s 7: 500 kBit/s 8: 800 kBit/s 9: 1 Mbit/s

8.10.4 Automatische Bus-Off Erholung konfigurieren

FSC	DO	D1	D2	D3	D4	D5	D6
24h	ABOR	-	-	-	-	-	-

ABOR: Automatische Bus-Off Erholung (de)aktivieren

= 0 Automatische Bus-Off Erholung deaktiviert (Gerät bleibt im Bus-Off)

= 1 Automatische Bus-Off Erholung aktiviert (Gerät startet neu)

8.10.5 Grenzfrequenz des Tiefpassfilters konfigurieren

FSC	DO	D1	D2	D3	D4	D5	D6
27h	FG0	FG1	FT	-	-	-	-

FGO/1: Grenzfrequenz in mHz bei Auswahl des Butterworth oder kritisch gedämpften Filters

Format: 16-Bit ganzzahliger Wert (100 bis 25000 bzw. 8000)

FT: 0 Tiefpassfilter deaktiviert

1 Butterworth Filter ausgewählt (maximale Filterfrequenz = 25000 mHz)

2 Kritisch gedämpfter Filter ausgewählt (maximale Filterfrequenz = 8000 mHz)

Eine detaillierte Beschreibung zur Verwendung des Filters befindet sich in Kapitel 7.1 "Tiefpassfilter".

8.10.6 Sensorfusion konfigurieren

FSC	DO	D1	D2	D3	D4	D5	D6
2Bh	EN	FLO	FL1	-	-	-	-

EN: 0 Sensorfusion deaktiviert

1 Sensorfusion aktiviert (Standardwert)

FL: Dauer der Störunterdrückung in Millisekunden bei Auswahl des Sensorfusionsfilters

Format: 16-Bit ganzzahliger Wert (100 bis 10000)

FSC	DO	D1	D2	D3	D4	D5	D6
2Ch	0	DG	DF	TDG	-	-	-

DG: 0 dynamische Gyro Driftkompensation deaktiviert

1 dynamische Gyro Driftkompensation aktiviert (Standardwert)

DF: Dämpfungsfaktor; Wert minimale Dämpfung 0 bis maximale Dämpfung 19

20: für die Winkelberechnung werden nur Gyro-Daten verwendet; Warnung: Drift möglich

TDG: manuelle Driftkompensation durchführen (Dauer: 2 Sekunden)

8.10.7 Nullpunktoffset konfigurieren

FSC	DO	D1	D2	D3	D4	D5	D6
28h	0FX0	0FX1	-	-	-	-	-
29h	0FY0	0FY1	-	-	-	-	-

OFX/OFY: Typ: Nullpunktoffset für X/Y

Format: 16-Bit vorzeichenbehafteter Wert (-18000 bis +17999)

Eine detaillierte Beschreibung zur Verwendung des Nullpunktoffset befindet sich in Kapitel 8.1 "Nullpunkteinstellung".

8.10.8 Standardgeräteparameter wiederherstellen

FSC	DO	D1	D2	D3	D4	D5	D6
40h	'L'	'0'	'A'	'D'	-	-	-

Der Sensor kann über den FSC = 40h auf Standardgeräteparameter zurückversetzt werden, indem die Signatur "LOAD" geschrieben wird. Damit werden die Werksparameter mit Ausnahme der IDs und der Baudrate sofort wieder aktiv. Nach einem Software-Reset des Sensors bzw. einem Hardware-Reset treten dann auch die Werksparameter der IDs und der Baudrate wieder in Kraft.

DO	D1	D2	D3
'L'	'0'	'A'	'D'
4Ch	4Fh	41h	44h

Tabelle 16: Standardgeräteparameter wiederherstellen

Eine detaillierte Beschreibung der Standardgeräteparameter befindet sich in Kapitel 8.4 "Aufbau der CAN-Telegramme".

8.10.9 Geräteparameter speichern

FSC	DO	D1	D2	D3	D4	D5	D6
50h	' S'	'A'	'V'	'E'	-	-	-

Werden Parameter im Sensor geändert, so treten die Änderungen, mit Ausnahme der IDs und der Baudrate, sofort in Kraft. Damit die geänderten Parameter auch nach einem Reset weiterhin aktiv sind, müssen diese im internen Permanentspeicher gesichert werden. Dies geschieht durch das Schreiben der Signatur "SAVE" über den FSC = 50h.

DO	D1	D2	D3
'S'	'A'	'V'	'E'
53h	41h	56h	45h

Tabelle 17: Geräteparameter speichern

8.10.10 Software-Reset durchführen

FSC	DO	D1	D2	D3	D4	D5	D6
FFh	'R'	'E'	'S'	'E'	'T'	-	-

Durch Senden des Telegramms mit FSC = FFh wird ein Software-Reset des Sensors durchgeführt. Der Sensor startet daraufhin neu und übermittelt ein Alive (Bootup)-Telegramm. Nach einem Software-Reset des Sensors werden nicht gespeicherte Parameter verworfen.

DO	D1	D2	D3	D4
'R'	'E'	'S'	'E'	'T'
52h	45h	53h	45h	54h

Tabelle 18: Software-Reset durchführen

9 Funktionsbeschreibung CANopen Schnittstelle

9.1 Funktionsübersicht

Der Sensor besitzt eine standardisierte CANopen Schnittstelle gemäß CiA DS-301 und ein Geräteprofil nach CiA DS-410. Sämtliche Messwerte und Parameter sind über das Objektverzeichnis (OV) zugängig. Die individuelle Konfiguration kann im internen Permanentspeicher (EEPROM) gesichert werden. Folgende CANopen Funktionen sind verfügbar:

- vier Sende-Datenobjekte (TPD01 bis TPD04), dynamisch mappbar in vier möglichen Betriebsmodi:
 - · individuelle Abfrage per Remote-Transmit-Request-Telegramm (RTR)
 - · zyklisches Senden per Intervallzeit
 - ereignisgesteuertes Senden bei Winkeländerung (TPD01)
 - · synchronisiertes Senden nach Empfang eines SYNC-Telegramms
- ein Service-Datenobjekt (Standard-SDO)
- Fehlermeldungen per Emergency-Objekt (EMCY) mit Unterstützung:
 - · des allgemeinen Fehlerregisters (Error Register)
 - · des herstellerspezifischen Statusregisters (Manufacturer Status)
 - · der Fehlerliste (Pre-defined Error Field)
- Überwachungsmechanismen Heartbeat sowie Nodeguarding / Lifeguarding
- Speicher- und Wiederherstellungsfunktion aller Parameter (Store und Load Parameter Field)

Zusätzlich zur CiA DS-301-Funktionalität existieren weitere hersteller- bzw. profilspezifische Eigenschaften:

- frei konfigurierbare Grenzfreguenz (Tiefpassfilter)
- Sensorfusionsfilter
- · Konfiguration der minimalen Winkeländerung für TPD01-Sendeereignis
- · Richtungsumschaltung der Neigungswinkel
- Nullpunkteinstellung der Neigungswinkel
- Einstellung von Node-ID und Baudrate über LSS-Service nach CiA DSP-305
- automatische Baudratenerkennung nach CiA AN-801

9.2 CANopen Struktur

CANopen ist ein auf CAN basierender offener Protokollstandard in der Automatisierungstechnik und wurde im Verband "CAN in Automation" (CiA) standardisiert. Wie praktisch alle Feldbusse setzt auch CANopen auf dem ISO/OSI 7-Schichtmodel auf. Das Protokoll nutzt den CAN-Bus als Übertragungsmedium und definiert die Elemente für das Netzwerkmanagement, die Verwendung der CAN-Identifier (Nachrichtenadresse), das zeitliche Verhalten auf dem Bus, die Art der Datenübertragung, und anwendungsbezogene Profile. Dies soll gewährleisten, dass CANopen Geräte unterschiedlicher Hersteller kombiniert werden können.

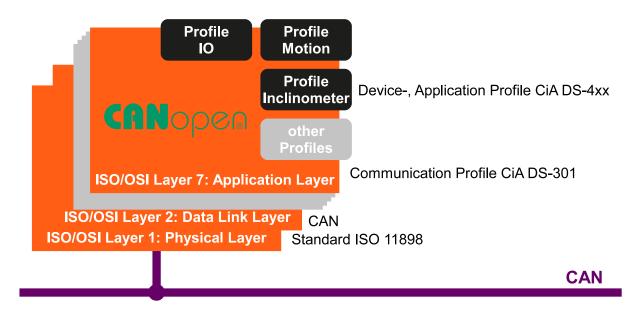


Abbildung 11: CANopen Struktur

CANopen beschreibt die ISO/OSI-Schicht 7 (Application Layer) als Kommunikationsprofil, das von der CiA im Standard CiA DS-301 spezifiziert wurde. Dieses legt die Art der Kommunikation für alle Geräte einheitlich fest. Darüber hinaus sind noch Geräte- und Anwendungsprofile für bestimmte Geräteklassen und Anwendungen im Standard CiA DS-4xx definiert.

9.3 CANopen Gerätemodell

Der Datenaustausch zwischen CANopen Geräten erfolgt über Datenobjekte. Das CANopen Kommunikationsprofil sieht dazu folgende Objektarten vor: Die Prozessdatenobjekte (PDOs) sind hochpriore Telegramme, welche dem Austausch von Prozessdaten dienen. Über die Service-Datenobjekte (SDOs) erfolgt der Zugriff auf die Parameter des Objektverzeichnisses eines Gerätes. Netzwerkmanagement Objekte dienen der Steuerung des Zustandsautomaten des CANopen Geräts und zur Überwachung der Knoten. Des Weiteren gibt es noch Spezialobjekte für Fehlermeldungen (Emergency), Synchronisation (SYNC) und Zeitstempel. Jedes CANopen Gerät besitzt ein CANopen Objektverzeichnis, in dem die Parameter für alle CANopen Objekte eingetragen sind.

9.4 COB-IDs

Die CAN-Identifier der Kommunikationsobjekte werden entsprechend des Pre-Defined Connection Set bei jedem Reset (Communication, Application und Hardware Reset) in Abhängigkeit der eingestellten Node-ID bestimmt. Die Tabelle 19 zeigt die Berechnungsgrundlage und die Standardwerte (Node-ID = 10).

Kommunikationsobjekt (COB)	Berechnung der COB-ID	Standardwert (Node-ID = 10)
NMT	0h	0h
SYNC	80h	80h
EMCY	80h + Node-ID	8Ah
TPD01	180h + Node-ID	18Ah

Kommunikationsobjekt (COB)	Berechnung der COB-ID	Standardwert (Node-ID = 10)
TPD02	280h + Node-ID	28Ah
TPD03	380h + Node-ID	38Ah
TPD04	480h + Node-ID	48Ah
Standard-SDO (Client > Server)	600h + Node-ID	60Ah
Standard-SDO (Server > Client)	580h + Node-ID	58Ah
Heartbeat	700h + Node-ID	70Ah

Tabelle 19: Berechnung der COB-IDs nach Pre-Defined Connection Set

9.5 Netzwerkmanagement: NMT

Abbildung 12 zeigt das NMT Zustandsdiagramm eines CANopen Gerätes. Nach der Initialisierung geht das Gerät automatisch in den Zustand Pre-Operational über. Dabei sendet das Gerät eine Boot-Up Nachricht. In diesem Zustand kann es über das Objektverzeichnis konfiguriert werden, denn die Service-Datenobjekte (SDO) sind bereits aktiv. Die Prozessdatenobjekte sind hingegen noch gesperrt.

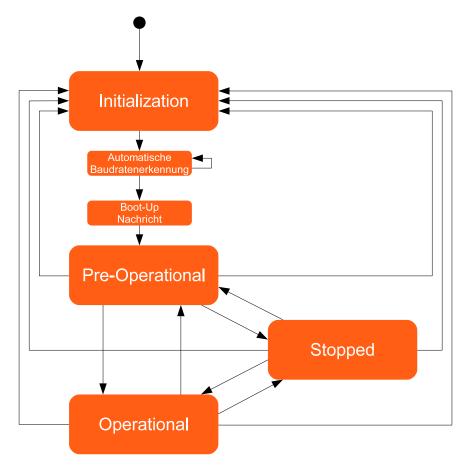


Abbildung 12: NMT Zustandsdiagramm

Durch das Senden der CAN-Nachricht "Start Remote Node" wechselt das Gerät in den Zustand Operational. Jetzt sind auch die Prozessdatenobjekte aktiv. Im Zustand Stopped ist keine Kommunikation - mit Ausnahme von Node-Guarding und Heartbeat - möglich.

Durch Setzen des Bits Self-Starting-Device an Objekt 1F80h kann der Sensor so konfiguriert werden, dass nach der Initialisierung direkt in den Zustand Operational gewechselt wird. Dies ermöglicht z.B. eine direkte Datenausgabe nach dem Aufstarten ohne weitere Kommunikation mit dem Sensor.

9.6 Prozessdaten: PDO (TPDO1 - TPDO4)

Der Sensor besitzt vier Sende-Prozessdatenobjekte (TPD01 bis TPD04). TPD01 enthält standardmäßig die aktuellen Neigungswerte (Lotwinkel). Das PD0 Mapping der Messwerte ist dynamisch einstellbar. Das Standardmapping ist in Tabelle 20 dargestellt.

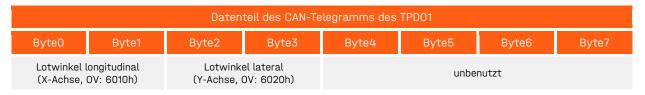


Tabelle 20: TPD01 Standardmapping

Die Sende-Prozessdatenobjekte TPDO2 bis TPDO4 sind standardmäßig deaktiviert (valid Bit der COB-ID gesetzt). Das Standardmapping ist in Tabelle 21, Tabelle 22 und Tabelle 23 dargestellt.

Datenteil des CAN-Telegramms des TPD02								
Byte0	Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7							
Euler-Winkel Pitch Euler-Winkel Roll (OV: 3100h:01h) (OV: 3100h:02h)				unbe	nutzt			

Tabelle 21: TPD02 Standardmapping

Datenteil des CAN-Telegramms des TPD03								
Byte0	Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7							
Beschleunigung X (OV: 3102h:01h)		Beschleu (OV: 310	nigung Y 12h:02h)	Beschleu (OV: 310		unbe	nutzt	

Tabelle 22: TPD03 Standardmapping

Datenteil des CAN-Telegramms des TPD04							
Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7							
Drehrate X (OV: 3103h:01h)		Drehr (OV: 310			rate Z 03h:03h)	unber	nutzt

Tabelle 23: TPD04 Standardmapping

Folgende Objekte können in die TPDOs gemappt werden:

Index	Subindex	Name	Format	Auflösung	Wertebereich
3100h	1	Euler-Winkel: Pitch	16bit signed	0,01 %bit	-90,00 90,00
3100h	2	Euler-Winkel: Roll	16bit signed	0,01 °/bit	-180,00 180,00
3102h	1	Beschleunigung: x-Achse	16bit signed	1/16384 g/bit	-2 2
3102h	2	Beschleunigung: y-Achse	16bit signed	1/16384 g/bit	-2 2

Index	Subindex	Name	Format	Auflösung	Wertebereich
3102h	3	Beschleunigung: z-Achse	16bit signed	1/16384 g/bit	-2 2
3102h	4	Ungefilterte Beschleunigung: x-Achse	16bit signed	1/16384 g/bit	-2 2
3102h	5	Ungefilterte Beschleunigung: y-Achse	16bit signed	1/16384 g/bit	-2 2
3102h	6	Ungefilterte Beschleunigung: z-Achse	16bit signed	1/16384 g/bit	-2 2
3103h	1	Drehrate: x-Achse	16bit signed	7/800 °/s/bit	-250 250
3103h	2	Drehrate: y-Achse	16bit signed	7/800 °/s/bit	-250 250
3103h	3	Drehrate: z-Achse	16bit signed	7/800 °/s/bit	-250 250
3105h	1	Statischer Lotwinkel: x-Achse	16bit signed	0,01 °/bit	-90,00 90,00
3105h	2	Statischer Lotwinkel: y-Achse	16bit signed	0,01 °/bit	-90,00 90,00
3105h	3	Statischer Euler-Winkel: Pitch	16bit signed	0,01 °/bit	-90,00 90,00
3105h	4	Statischer Euler-Winkel: Roll	16bit signed	0,01 °/bit	-180,00 180,00
6010h	0	Lotwinkel: x-Achse	16bit signed	0,01 °/bit	-90,00 90,00
6020h	0	Lotwinkel: y-Achse	16bit signed	0,01 °/bit	-90,00 90,00
6511h	0	Temperatur	8bit signed	1°C / bit	-128 127

Tabelle 24: Mappbare Objekte

9.6.1 PDO Kommunikationsarten

9.6.1.1 Individuelle Abfrage (Polling)

Die TPDOs können – falls aktiviert – jederzeit durch Senden eines Remote-Transmit-Request-Telegramms (RTR) abgefragt werden.

9.6.1.2 Zyklisches Senden

Die Konfiguration der TPDOs 1 bis 4 erfolgt über die Objekte 1800h bis 1803h.

Das zyklische Senden des TPDO ist aktiviert, wenn der Subindex 05h (Intervallzeit in Millisekunden) einen Wert größer 0 enthält und die COB-ID an Subindex 01h gültig ist (Bit 31 gelöscht). Weiterhin muss der Subindex 02h (Übertragungstyp) den Wert 254 (asynchron, herstellerspezifisch) enthalten. Der Sensor sendet dann im Zustand OPERATIONAL zyklisch das TPDO mit der eingestellten Periodendauer.

9.6.1.3 Synchronisiertes Senden

Das synchronisierte Senden dient dem gleichzeitigen Abfragen der Winkelwerte von mehreren Sensoren. CANopen stellt hierzu das SYNC Objekt zur Verfügung, ein CAN-Telegramm hoher Priorität ohne Nutzdaten. Es wird von einem Busteilnehmer (in der Regel vom Master) zyklisch in festen Intervallen versandt. Der Sensor liest seinen aktuellen Winkelwert nach jedem "n-ten" Empfang des SYNC Objekts aus und senden das TPDO direkt anschließend, sobald der Bus dies zulässt.

Das synchronisierte Senden wird durch Schreiben des Konfigurationsobjektes für das entsprechende TPDO aktiviert. (Objekt 1800h bis 1803h für TPDO 1 bis 4). Dafür muss der Subindex O2h (Übertragungs-typ) den Wert n = 1...240 enthalten.

9.6.1.4 Ereignisgesteuertes Senden bei Winkeländerung (herstellerspezifisch)

Die Buslast durch PDOs kann verringert werden, indem nur dann das TPDO1 gesendet wird, wenn eine entsprechende Winkeländerung eingetreten ist. Diese Funktionalität ist im herstellerspezifischen Teil des Objektverzeichnisses unter dem Index 3001h konfigurierbar. Der Eintrag 1800h/02h (Übertragungstyp) muss dazu den Wert 254 (asynchron, herstellerspezifisch) enthalten. Das ereignisgesteuerte Senden bei Winkeländerung kann nur für TPDO1 aktiviert werden.

9.7 Parameterdaten: SDO

Die im Objektverzeichnis aufgeführten Parameter werden über Service-Daten-Objekte (SDOs) gelesen und beschrieben. Wie in Tabelle 25 ersichtlich ist, besitzen die Objektdaten einen 16-Bit Index, über den ein Parameter direkt adressiert werden kann. Zudem existiert noch zu jedem Index ein 8-Bit Sub-Index, der eine weitere Auswahl innerhalb eines Indexes ermöglicht. Die 8 Byte des SDOs sind im Datenbereich der CAN-Nachricht untergebracht.

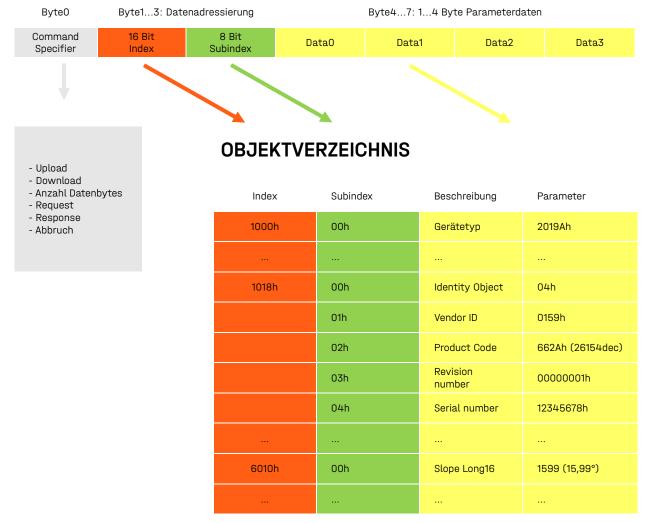


Abbildung 13: SDO Protokoll - Zugriff auf Objektverzeichnis

9.8 Objektverzeichnis

Das Objektverzeichnis enthält alle Datenobjekte, die von außen zugänglich sind und die das Verhalten von Kommunikation, Applikation und Statusmaschinen beeinflussen. Es ist in drei Teile gegliedert:

kommunikationsspezifischer Teil (Index: 0x1000 - 0x1FFF)
 herstellerspezifischer Teil (Index: 0x2000 - 0x5FFF)
 profilspezifischer Teil (Index: 0x6000 - 0x9FFF)

Die enthaltenen Parameter können mittels des Standard SDO über Index und Subindex gelesen und geschrieben werden.

Die folgenden Abschnitte beschreiben alle Parameter im Objektverzeichnis eines Sensors mit Index, Subindex, Datentyp, Zugriffsrecht und Standardwert (Werkseinstellung). Die Spalte "Speichern" kennzeichnet, ob ein Parameter im internen Permanentspeicher ("save"-Signatur in OV-Index 1010h/01h schreiben) gespeichert werden kann.

9.8.1 Kommunikationsparameter (nach CiA DS-301)

Index	Sub- Index	Parameter	Daten- typ	Zu- griff	Standard- wert	Spei- cher n
1000h	0	Gerätetyp (Geräteprofil 410)		const	2019Ah	
1001h	0	Fehlerregister	UNS8	ro	0	
1002h	0	Herstellerstatusregister	UNS32	ro	0	
1003h	Vordefin	iertes Fehlerfeld				
	0	Anzahl Fehlereinträge	UNS32	rw	0	
	15	Fehler-Code (ältester Fehler auf höchstem Index)	UNS32	ro	0	
1005h	0	COB-ID Sync-Nachricht	UNS32	rw	80h	
1008h	0	Gerätename	VSTR	const	{typabh.}	
100Ah	0	Softwareversion ("Vxx.yy")	VSTR	const	{typabh.}	
100Ch	0	Guard Time (Vielfaches von 1 ms)	UNS16	rw	0	х
100Dh	0	Life Time Factor	UNS8	rw	0	Х
1010h	Paramet	er speichern (Signatur: 's','a','v','e' - 65766173h auf SubIndex 14)			
	0	höchster unterstützter Subindex	UNS32	ro	4	
	1	Alle Parameter speichern (OV: 0x1000-0x9FFF)	UNS32	rw	1	
	2	Kommunikationsparameter speichern (OV: 0x1000-0x1FFF)	UNS32	rw	1	
	3	Applikationsparameter speichern (OV: 0x6000-0x9FFF)	UNS32	rw	1	
	4	Herstellerparameter speichern (OV: 0x2000-0x5FFF)	UNS32	rw	1	
1011h	Standar	dparameter wiederherstellen (Signatur: 'l','o','a','d' - 64616F6Ch a	uf SubIndex	14)		
	0	höchster unterstützter Subindex	UNS32	ro	4	

iederherstellen				n	
FFF)	UNS32	rw	1		
parameter wiederherstellen FF)	UNS32	rw	1		
	UNS32	rw	1		
	UNS32	rw	1		
y-Nachricht	UNS32	ro	80h + Node- ID		
en zwei EMCY-Nachrichten (Vielfaches von	UNS16	rw	0	х	
allzeit (Vielfaches von 1 ms, 0 deaktiviert)	UNS16	rw	0	Х	
itzter Subindex	UNS8	ro	4		
ellerkennung GEMAC Chemnitz GmbH)	UNS32	ro	159h		
	UNS32	ro	{typabh.}		
-	UNS32	ro	{typabh.}		
	UNS32	ro	{typabh.}		
itzter Subindex	UNS8	ro	2		
erver	UNS32	ro	600h + Node-ID		
Dlient	UNS32	ro	580h + Node-ID		
ionsparameter					
itzter Subindex	UNS8	ro	5		
	UNS32	ro*	180h + Node-ID	x*	
	UNS8	rw	1	X	
	UNS16	rw	0	X	
ntrag	UNS8	rw	0	х	
	UNS16	rw	0	x	
ionsparameter					
itzter Subindex	UNS8	ro	5		
	UNS32	ro*	80000280h + Node-ID	х*	
	UNS8	rw	1	x	
	UNS16	rw	0	х	
	meter wiederherstellen Iter wiederherstellen	meter wiederherstellen Iter wiederherstellen	meter wiederherstellen ferer) meter wiederherstellen ferer) der wiederherstellen ferer) py-Nachricht meter wiederherstellen frw py-Nachricht meter wiederherstellen frw py-Nachricht meter wiederherstellen frw meter wiederherstellen met	DNS32 TW	

Index	Sub- Index	Parameter	Daten- typ	Zu- griff	Standard- wert	Spei- cher n
	4	Kompatibilitätseintrag	UNS8	rw	0	×
	5	Intervallzeit für zykl. Senden (Vielfaches von 1 ms, 0 deaktiviert)		rw	0	x
1802h	Transmit PD03 Kommunikationsparameter					
	0	höchster unterstützter Subindex	UNS8	ro	5	
	1	COB-ID	UNS32	ro*	80000380h + Node-ID	X*
	2	Übertragungstyp (synchron / asynchron-herstellerspezifisch)	UNS8	rw	1	х
	3	Sperrzeit zwischen zwei TPDO-Nachrichten (Vielfaches von 100 μs)	UNS16	rw	0	x
	4	Kompatibilitätseintrag	UNS8	rw	0	X
	5	Intervallzeit für zykl. Senden (Vielfaches von 1 ms, 0 deaktiviert)	UNS16	rw	0	x
1803h	Transmi	t PD04 Kommunikationsparameter				
	0	höchster unterstützter Subindex	UNS8	ro	5	
	1	COB-ID	UNS32	ro*	80000480h + Node-ID	X*
	2	Übertragungstyp (synchron / asynchron-herstellerspezifisch)	UNS8	rw	1	х
	3	Sperrzeit zwischen zwei TPDO-Nachrichten (Vielfaches von 100 μs)	UNS16	rw	0	x
	4	Kompatibilitätseintrag	UNS8	rw	0	X
	5	Intervallzeit für zykl. Senden (Vielfaches von 1 ms, 0 deaktiviert)	UNS16	rw	0	х
1A00h	Transmi	t PD01 Mappingparameter				
	0	höchster unterstützter Subindex	UNS8	ro	2	
	1	Mapping Eintrag 1	UNS32	rw	0x60100010	х
	2	Mapping Eintrag 2	UNS32	rw	0x6020001 0	х
	3	Mapping Eintrag 3	UNS32	rw	0	Х
	4	Mapping Eintrag 4	UNS32	rw	0	X
	5	Mapping Eintrag 5	UNS32	rw	0	X
	6	Mapping Eintrag 6	UNS32	rw	0	Х
	7	Mapping Eintrag 7	UNS32	rw	0	X
	8	Mapping Eintrag 8	UNS32	rw	0	x
1A01h	Transmi	t PD02 Mappingparameter				
	0	höchster unterstützter Subindex	UNS8	ro	2	
	1	Mapping Eintrag 1	UNS32	rw	0x31000110	х
	2	Mapping Eintrag 2	UNS32	rw	0x31000210	Х

Index	Sub- Index	Parameter	Daten- typ	Zu- griff	Standard- wert	Spei- cher n
	3	Mapping Eintrag 3	UNS32	rw	0	×
	4	Mapping Eintrag 4	UNS32	rw	0	х
	5	Mapping Eintrag 5	UNS32	rw	0	x
	6	Mapping Eintrag 6	UNS32	rw	0	x
	7	Mapping Eintrag 7	UNS32	rw	0	х
	8	Mapping Eintrag 8	UNS32	rw	0	х
1A02h	Transmi	t PD03 Mappingparameter				
	0	höchster unterstützter Subindex	UNS8	ro	3	
	1	Mapping Eintrag 1	UNS32	rw	0x31020110	х
	2	Mapping Eintrag 2	UNS32	rw	0x31020210	х
	3	Mapping Eintrag 3	UNS32	rw	0x31020310	х
	4	Mapping Eintrag 4	UNS32	rw	0	х
	5	Mapping Eintrag 5	UNS32	rw	0	х
	6	Mapping Eintrag 6	UNS32	rw	0	х
	7	Mapping Eintrag 7	UNS32	rw	0	х
	8	Mapping Eintrag 8	UNS32	rw	0	х
1A03h	Transmi	t PD04 Mappingparameter				
	0	höchster unterstützter Subindex	UNS8	ro	3	
	1	Mapping Eintrag 1	UNS32	rw	0x31020110	х
	2	Mapping Eintrag 2	UNS32	rw	0x31020210	х
	3	Mapping Eintrag 3	UNS32	rw	0x31020310	х
	4	Mapping Eintrag 4	UNS32	rw	0	х
	5	Mapping Eintrag 5	UNS32	rw	0	х
	6	Mapping Eintrag 6	UNS32	rw	0	х
	7	Mapping Eintrag 7	UNS32	rw	0	х
	8	Mapping Eintrag 8	UNS32	rw	0	х
1F51h	Program	nmdownload - Steuerung				
	0	höchster unterstützter Subindex	UNS8	ro	1	
	1	Bereich Firmware	UNS8	rw	1	
1F80h	0	Self-Starting Device (Bit 3) nur Schreiben und Löschen von Bit 3 (Wert 8h) erlaubt	UNS32	rw	0	х
* das Gü	ltigkeitsbi ⁻	t (Bit 31) der COB-ID wird gespeichert				

Tabelle 25: Kommunikationsparameter im Objektverzeichnis

9.8.1.1 Fehlerregister (1001h)

Das Fehlerregister zeigt den allgemeinen Fehlerstatus des Gerätes an. Jedes Bit steht dabei für eine Fehlergruppe. Ist ein Bit gesetzt (= 1), so ist mindestens ein Fehler dieser Gruppe gerade aktiv. Der Inhalt dieses Registers wird in jeder EMCY-Nachricht übertragen. Folgende Fehlergruppen können auftreten:

	Fehlerregister (1001h)								
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Hersteller- spezifischer Fehler	Accuracy Warning	Profilspezifi- scher Fehler	Kommuni- kations- fehler	unbenutzt			mind. ein Fehler aktiv		

Tabelle 26: Fehlerregister (1001h)

Befindet sich das Gerät im Fehlerzustand (mindestens ein Fehler aktiv), wird dies durch das gesetzte Bit 0 angezeigt. Bei Auftreten eines Kommunikationsfehlers (Überlauf der Sende-/Empfangspuffer, Guardingfehler oder CAN-Controller im Modus Passiv/Bus-Off) wird das Bit 4 gesetzt. Ein profilspezifischer Fehler (Sensorfehler) wird durch das Bit 5 angezeigt. Das Bit 7 signalisiert einen herstellerspezifischen Fehler (EEPROM-Fehler).

9.8.1.2 Herstellerstatusregister (1002h)

Dieses Register zeigt den aktuellen Zustand sämtlicher detektierbarer Fehler an. Jedes Bit steht dabei für einen bestimmten Fehler. Ist ein Bit gesetzt (= 1), so ist dieser Fehler gerade aktiv. Die niederwertigen 16 Bit dieses Registers (Bit 15...Bit 0) werden in jeder EMCY-Nachricht in den ersten zwei Bytes des herstellerspezifischen Teils übertragen und ebenfalls in das Zusatzinformationsfeld (Bit 31...Bit 16) des vordefinierten Fehlerfelds 1003h eingetragen. Die Definitionen der einzelnen Bits in den Bitfeldern "Gerätefehler" und "Kommunikationsfehler" sind in Tabelle 37 dargestellt.

Herstellerstatusregister (1002h)							
Bit31Bit16	Bit15Bit8	Bit7Bit0					
unbenutzt	Bitfeld Kommunikationsfehler	Bitfeld Gerätefehler					

Tabelle 27: Herstellerstatusregister (1002h)

9.8.1.3 Vordefiniertes Fehlerfeld (1003h)

Der Sensor führt eine Fehlerliste über die fünf zuletzt aufgetretenen Fehler. Der Eintrag 1003h/00h enthält die Anzahl der Fehlereinträge im Fehlerfeld. Alle anderen Subindizes beinhalten sämtliche aufgetretene Fehlerzustände in chronologischer Reihenfolge, wobei der zuletzt aufgetretene Fehler immer unter Subindex 01h zu finden ist. Der älteste Fehler befindet sich im höchsten verfügbaren Subindex (Wert von 1003h/00h) und wird als erstes bei Auftreten von mehr als fünf Fehlern aus der Liste entfernt. Tritt ein Fehler ein, so wird ein neuer Fehlereintrag in 1003h hinzugefügt und ebenfalls per EMCY-Nachricht mitgeteilt. Ein Fehlereintrag ist wie folgt aufgebaut:

Fehlereintrag im vordefinierten Fehlerfeld (1003h)							
Zusatzinformation	sfeld (Bit31Bit16)	Fehler-Code (Bit15Bit0)					
	erstatusregisters 1002h es Fehlereintritts)	0000h Fehler rückgesetzt oder kein Fehler mehr vorhanden 5000h EEPROM-Fehler					
Bitfeld Kommunikationsfehler	Bitfeld Gerätefehler	5010h Sensorfehler-X 5020h Sensorfehler-Y 5040h Genauigkeitswarnung / Messbereich überschritten 8110h Empfangs-/Sendepuffer-Überlauf 8120h CAN Warning Limit überschritten 8130h Node Guard Event 8140h Bus-Off Zustand verlassen					

Tabelle 28: Fehlereintrag im vordefinierte Fehlerfeld (1003h)

Die Fehlerliste kann komplett gelöscht werden, indem der Eintrag 1003h/00h mit "O" beschrieben wird.

9.8.1.4 Parameter speichern (1010h) und wiederherstellen (1011h)

Werden Parameter im Objektverzeichnis geändert, so treten die Änderungen sofort in Kraft. Damit die geänderten Parameter auch nach einem Reset weiterhin aktiv sind, müssen diese im internen Permanentspeicher gesichert werden. Durch das Schreiben der Signatur "save" (65766173h) auf den Eintrag 1010h/01h werden alle aktuellen Parameter des Objektverzeichnisses in den Permanentspeicher übertragen.

Das Objektverzeichnis kann über den Eintrag 1011h/01h auf Werkseinstellungen zurückgesetzt werden, indem die Signatur "load" (64616F6Ch) auf diesen Eintrag geschrieben wird. Damit werden die Werksparameter in den Permanentspeicher geschrieben. Nach einem "Reset Application" (NMT-Kommando) bzw. einem Hardware-Reset treten die Änderungen in Kraft (wird lediglich ein "Reset Communication" (NMT-Kommando) gesendet, so werden zunächst nur die Werkseinstellungen der Kommunikationsparameter wirksam).

Durch Schreiben der Signatur auf Subindex: 02h, 03h oder 04h besteht die Möglichkeit nur Teile des Objektverzeichnisses zu speichern oder zu laden.

9.8.1.5 Transmit PDO - Übertragungstyp (1800h / 1801h / 1802h / 1803h)

Über den Subindex 02h kann festgelegt werden, wie das Versenden des PDOs ausgelöst wird.

Transmit PDO - Übertragungstyp					
Übertragungstyp	Beschreibung				
1240	Synchron (zyklisch) Übertragung nach jedem 1240ten Empfang des SYNC Objektes nur "Synchronisierte Übertragung" mittels SYNC möglich				
253	Übertragung ausschließlich mit RTR				
254	Asynchron, herstellerspezifisch "Zyklisches Senden" und/oder "Senden bei Winkeländerung" (nur TPD01) durch entsprechende Konfiguration aktivierbar				

Tabelle 29: Transmit PDO - Übertragungstyp

9.8.2 Herstellerspezifischer Teil

Index	Sub- Index	Parameter	Daten- typ	Zu- griff	Standard- wert	Spei- cher n
2002h	0	Automatische Bus-Off Erholung	BOOL	rw	0	x
3000h	Tiefpass	rfiltereinstellungen				
	0	höchster unterstützter Subindex	UNS8	ro	2	
	1	Filtertyp (0=aus, 1=Butterworth, 2=Kritisch gedämpft)	UNS16	rw	2	x
	2	Grenzfrequenz Tiefpassfilter (10025000/8000, in mHz)	UNS16	rw	5000	x
3001h	TPD01 S	enden bei Winkeländerung				
	0	höchster unterstützter Subindex	UNS8	ro	3	
	1	Senden bei Winkeländerung aktivieren/deaktivieren (1/0)	UNS16	rw	0	х
	2	min. Winkeländerung für longitudinale (X) Achse (in 1/100°)	UNS16	rw	100	х
	3	min. Winkeländerung für laterale (Y) Achse (in 1/100°)	UNS16	rw	100	х
3002h	Konfigur	ration Sensorfusion				
	0	höchster unterstützter Subindex	UNS8	ro	2	
	1	Sensorfusion aktivieren/deaktivieren (1/0)	UNS8	rw	1	х
	2	maximale Störunterdrückungszeit (in ms)	UNS16	rw	5000	х
	3	Automatische Driftkompensation aktivieren/deaktivieren (1/0)	UNS8	rw	1	х
	4	Manuelle Driftkompensation auslösen (durch Schreiben von 1)	UNS8	w	0	
	5	Empfindlichkeit für die automatische Driftkompensation	UNS8	rw	3	X
	7	Dämpfungsfaktor (gültiger Bereich: 020)	UNS8	rw	17	Х
3100h	Ausgabe	Euler-Winkel				
	0	höchster unterstützter Subindex	UNS8	ro	2	
	1	Euler-Winkel Pitch (in °/100)	INT16	ro	-	
	2	Euler-Winkel Roll (in %100)	INT16	ro	-	
3102h	Ausgabe	Beschleunigung				
	0	höchster unterstützter Subindex	UNS8	ro	3	
	1	Beschleunigung X-Achse (in 1/16384 g)	INT16	ro	-	
	2	Beschleunigung Y-Achse (in 1/16384 g)	INT16	ro	-	
	3	Beschleunigung Z-Achse (in 1/16384 g)	INT16	ro	-	
	4	Ungefilterte Beschleunigung X-Achse (in 1/16384 g)	INT16	ro	-	
	5	Ungefilterte Beschleunigung Y-Achse (in 1/16384 g)	INT16	ro	-	
	6	Ungefilterte Beschleunigung Z-Achse (in 1/16384 g)	INT16	ro	-	
3103h	Ausgabe	Drehrate				
	0	höchster unterstützter Subindex	UNS8	ro	3	
	1	Drehrate X-Achse (in 7/800 °/s)	INT16	ro	-	

Index	Sub- Index	Parameter	Daten- typ	Zu- griff	Standard- wert	Spei- cher n
	2	Drehrate Y-Achse (in 7/800 °/s)	INT16	ro	-	
	3	Drehrate Z-Achse (in 7/800 °/s)	INT16	ro	-	
3104h	Ausgabe	e Gyrowinkel				
	0	höchster unterstützter Subindex	UNS8	ro	3	
	1	Gyrowinkel X-Achse (in 1/100°)	INT16	ro	-	
	2	Gyrowinkel Y-Achse (in 1/100°)	INT16	ro	-	
	3	Gyrowinkel Z-Achse (in 1/100°)	INT16	ro	-	
3105h	Ausgabe	e statischer Winkel				
	0	höchster unterstützter Subindex	UNS8	ro	-	
	1	Lotwinkel: longitudinal (x-Achse, in 1/100°)	INT16	ro	-	
	2	Lotwinkel: lateral (y-Achse, in 1/100°)	INT16	ro	-	
	3	Euler-Winkel: Pitch (in 1/100°)	INT16	ro	-	
	4	Euler-Winkel: Roll (in 1/100°)	INT16	ro	-	
5555h	reservie	rter Index (ausschließlich für Herstellerzugriff)				

Tabelle 30: Herstellerspezifischer Teil des Objektverzeichnisses

9.8.2.1 Automatische Bus-Off Erholung (2002h)

Diese Eigenschaft regelt das Verhalten des Sensors, wenn er sich im Zustand Bus-Off befindet. Falls aktiviert, so kann der Sensor aus diesem wieder in den fehleraktiven Zustand mit zurückgesetzten Fehlerzählern wechseln. Dazu muss er 128 mal 11 aufeinanderfolgende rezessiven Bits auf dem Bus detektieren.

Falls deaktiviert, bleibt der Sensor im Zustand Bus-Off.

9.8.2.2 Tiefpassfiltereinstellungen (3000h)

Über den Eintrag 3000h/01h wird der Tiefpassfilter ausgewählt. Die Grenzfrequenz wird über das Objekt 3000h/02 eingestellt. Dabei sind Werte von 100 (= 0,1 Hz) bis 25000/8000 (= 25 Hz/8 Hz) zulässig. Eine Beschreibung des Filters ist in Kapitel 7.1 "Tiefpassfilter" zu finden.

Filter	Filtertyp (3000h/01h)	Einstellbarer Frequenzbereich (3000h/02h)	Filtertyp
deaktiviert	0	-	statische Neigungsmessung bei Anwendungen ohne äußere Krafteinwirkungen
Butterworth	1	0,1 Hz 25 Hz	statische Neigungsmessung bei hoher Dämpfung gegenüber Vibrationen
Kritisch gedämpft	2	0,1 Hz 8 Hz	Neigungsmessung bei Anwendungen, die einer gewissen Dynamik unterliegen, ohne Überschwingen bei Winkelän- derungen bei gleichzeitig guter Dämpfung

Tabelle 31: Filterauswahl

9.8.2.3 TPD01 Senden bei Winkeländerung (3001h)

Über den Eintrag 3001h/01h kann das ereignisgesteuerte Senden des TPD01 bei Winkeländerung aktiviert (= 1) bzw. deaktiviert (= 0) werden. Für die Aktivierung muss der Übertragungstyp des TPD01 auf "Asynchron, herstellerspezifisch" stehen (1800h/02h = 254).

Subindex 02h und 03h ermöglichen das getrennte Einstellen der minimal notwendigen Winkeländerung für die longitudinale (X) und laterale (Y) Achse.

Die Winkelwerte sind in °/100 angegeben (100facher Winkelwert) und können ab 1 (= 0,01°) frei eingestellt werden.

Ist das Senden bei Winkeländerung aktiviert, so gibt der Neigungssensor im Zustand OPERATIONAL stets dann das TPDO1 neu aus, wenn sich der Neigungswert von mindestens einer Achse um den unter 3001h/02h bzw. 03h eingestellten Winkelwert geändert hat. Dabei wird die Winkeldifferenz stets zwischen dem aktuellen Neigungswert und dem zuletzt durch das TPDO1 gesendeten Winkelwertes ermittelt und geprüft. Bei jedem Übergang in den Zustand OPERATIONAL teilt der Sensor die aktuelle Position durch einmaliges Aussenden des TPDO1 mit (nur, wenn 3001h/01h = 1).

Hinweis:

Sollten geringe Winkeldifferenzen unter 3001h/02h bzw. 03h eingetragen werden, so empfiehlt sich die Aktivierung des Tiefpassfilters (Index 3000h) und des Sensorfusionsfilters (Index 3002h), um den Einfluss von Vibrationen und damit das häufige Ausgeben des TPD01 zu vermindern.

9.8.2.4 Konfiguration der Sensorfusion (3002h)

Für die Konfiguration des Sensorfusionsfilters (siehe Kapitel 7.2 "Sensorfusionsfilter") stehen die Sub-Indizes des Objektes 3002h zur Verfügung. Sub-Index 01h ermöglicht das Aktivieren und Deaktivieren der Sensorfusion. Unter 3002h/02h wird die Störunterdrückungszeit konfiguriert. Sub-Index 03h bis 05h konfigurieren die Driftkompensation für die Gyro-Daten. Für die erweiterte Konfiguration ist Sub-Index 07h zum Setzen des Dämpfungsfaktors (siehe Tabelle 5) vorhanden.

9.8.3 Profilspezifischer Teil (nach CiA DS-410)

Index	Sub- Index	Parameter		Zu- griff	Standard- wert	Spei- chern
6000h	0	Auflösung (Vielfaches von 0,001°)		ro	10	
6010h	0	Neigungswert longitudinal (X-Achse, 100facher Winkelwert in °)		ro	-	
6011h	0	Betriebsparameter longitudinal (Invertierung, Nullpunkteinstellung)	UNS8	rw	0	Х
6012h	0	Vorgabewert für longitudinale (X) Achse	INT16	rw	0	Х
6013h	0	Offsetwert für longitudinale (X) Achse	INT16	rw	0	X
6014h	0	Differenzoffsetwert für longitudinale (X) Achse	INT16	rw	0	Х
6020h	0	Neigungswert lateral (Y-Achse, 100facher Winkelwert in °)	INT16	ro	-	
6021h	0	Betriebsparameter lateral (Invertierung, Nullpunkteinstellung)	UNS8	rw	0	x

Index	Sub- Index	Parameter	Daten- typ	Zu- griff	Standard- wert	Spei- chern
6022h	0	Vorgabewert für laterale (Y) Achse	INT16	rw	0	Х
6023h	0	Offsetwert für laterale (Y) Achse	INT16	rw	0	X
6024h	0	Differenzoffsetwert für laterale (Y) Achse	INT16	rw	0	X
6511h	0	Temperatur (intern in °C)	INT8	ro	-	

Tabelle 32: Profilspezifischer Teil des Objektverzeichnisses

9.8.3.1 Auflösung (6000h)

Die Auflösung des Sensors beträgt fest 0,01° (default: 10 * 0,001°). Alle Winkelwerte im Objektverzeichnis (6010h, 6012h, 6013h, 6014h sowie 6020h, 6022h, 6023h, 6024h) sind als Vielfaches von 0,01° zu interpretieren.

Beispiel: Winkelwert = $-2370 \times 0.01^{\circ} = -23.70^{\circ}$

9.8.3.2 Neigungswert axial (6010h) / Neigungswerte longitudinal und lateral (6010h und 6020h)

Die aktuellen Winkelwerte der Neigungsachsen sind sowohl per SDO-Zugriff auf das Objektverzeichnis (in jedem Gerätezustand) als auch per TPDO zugängig. Bei aktivierter Nullpunkteinstellung (Betriebsparameter: 6011h und 6021h) wird der Neigungswert wie folgt berechnet:

Neigungswert = physikalisch gemessener Neigungswert + Differenzoffsetwert + Offsetwert

Bei deaktivierter Nullpunkteinstellung:

Neigungswert = physikalisch gemessener Neigungswert

Beispiel: Wertebereich: -9000 ... +9000 → - 90,00° ... + 90,00°

9.8.3.3 Betriebsparameter (6011h und 6021h)

Die Betriebsparametereinstellungen des Sensors (6011h und 6021h) erlauben das Umstellen des mathematischen Vorzeichens des Neigungswertes sowie eine Nullpunkteinstellung. Werksseitig sind diese Optionen deaktiviert, d.h. die Richtung des Winkelwertes (Polarität der Achsen) entspricht der in Abbildung 1 dargestellten Zuordnung.

Tabelle 33: Betriebsparameter (6011h und 6021h)

Die Invertierung der Neigungswerte hat Auswirkungen auf das Vorzeichen der Ausgabe der Lotwinkel sowie der Euler-Winkel. Alle weiteren Ausgabedaten werden davon nicht beeinflusst.

9.8.3.4 Nullpunkteinstellung für Lotwinkel: Vorgabewert, Offsetwert, Differenzoffsetwert (60x1/2/3h)

Mit Hilfe der Werte für "Vorgabewert", "Offsetwert" und "Differenzoffsetwert" lässt sich eine Nullpunkteinstellung des Neigungswinkels (Lotwinkel) vornehmen. Diese ist nur aktiv, wenn das Bit1 in den Betriebsparametern (6011h/6021h) gesetzt ist.

Die Nullpunkteinstellung hat keine Auswirkungen auf die Ausgabe der Euler-Winkel.

Wert	Objekt	Beschreibung
Vorgabewert	6012h 6022h	Vorgabewert für die Nullpunkteinstellung Wertebereich abhängig von Einstellung in Objekt 6000h
Offsetwert	6013h 6023h	Berechneter Offsetwert beim Schreiben auf Objekt 6012h oder 6021h Berechneter Offsetwert = Vorgabewert bei tacc - physikalisch gemessener Neigungswert bei tacc - Differenzoffsetwert tacc: Zeitpunkt des schreibenden Zugriffs auf den Vorgabewert (6012h, 6022h)
Differenzoffsetwert	6014h 6024h	Zusätzlicher Offset, unabhängig von Objekt 6012h und 6013h / 6022h und 6023h. Der hier eingegebene Wert wird direkt auf den aktuellen Neigungswert aufaddiert.

Tabelle 34: Nullpunkteinstellung

9.9 Fehlermeldungen: Emergency

Mit Hilfe von Emergency-Nachrichten werden wichtige interne Gerätefehler und CAN-Kommunikationsfehler an andere Teilnehmer im Bus übermittelt. Tritt einer dieser Fehler ein, so werden die OV-Einträge 1001h (Fehlerregister), 1002h (Herstellerstatusregister) und 1003h (vordefiniertes Fehlerfeld) aktualisiert. Wenn ein Fehler beseitigt wird, so wird eine Emergency-Nachricht mit dem Error Code 0x0000 gesendet. Dabei wer-den verbleibende Fehler im Byte 2 (Error Register) und den Bytes 3 und 4 des herstellerspezifischen Fehlerfeldes signalisiert. Sobald das Gerät fehlerfrei ist, sendet es eine Emergency-Nachricht, welche nur Nullen enthält. Der aktuelle Gerätezustand (Pre-Operational, Operational oder Stopped) wird von den Fehlerzuständen, außer beim Guardingfehler, nicht beeinflusst.

Emergency-Nachrichten werden mit hoher Priorität auf dem Bus gesendet und sind stets 8 Byte lang. Der Aufbau des Telegrammes ist in Tabelle 35 dargestellt:

	Emergency Object							
Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte								
Emergency	Emergency Error Code		Error Herstellerspezifisches Fehlerfeld Register					
		(1001h)	Bitfeld Kommunika- tionsfehler	Bitfeld Gerätefehler	0x00	0x00	0x00	

Tabelle 35: Emergency Object

Emergency	Error Codes
0x0000	Ein Fehler wurde rückgesetzt oder kein Fehler mehr vorhanden (Error Register = 0)
0x5000	EEPROM Fehler, Fehler beim Speichern der Konfiguration
0x5010	Sensorfehler X-Achse
0x5020	Sensorfehler Y-Achse

Emergency	Emergency Error Codes					
0x5040	Genauigkeitswarnung: Werte für Beschleunigung oder Drehrate außerhalb des Messbereichs, Winkelgenauigkeit des Sensors ist eingeschränkt					
0x8110	Empfangs-/Sendepuffer-Überlauf, CAN Nachrichten gingen verloren					
0x8120	CAN Warning Limit überschritten					
0x8130	Der Ausfall des Guarding-Masters wurde erkannt (Node Guard Event)					
0x8140	Bus-Off Zustand verlassen					

Tabelle 36: Emergency Error Codes

Bitfeld Gerä	itefehler			
0x01	Sensorfehler X-Achse			
0x02	Sensorfehler Y-Achse			
0x80	EEPROM Fehler: Beim Speid	chern der Konfiguration ist ein Fehler aufgetreten		
Bitfeld Kom	nmunikationsfehler			
0x01	CAN Warning Limit übersch	ritten (zu viele Error Frames)		
0x02	CAN Bus-Off Zustand wurde erreicht. Es wird eine Emergency-Nachricht nach automatischen Verlassen des Bus-Off Zustandes gesendet.			
0x04	Receive Queue Overrun,	Empfangspuffer-Überlauf, CAN Nachrichten gingen verloren		
0x08	Transmit Queue Overrun,	Sendepuffer-Überlauf, CAN Nachrichten gingen verloren		
0x80	Guarding Error,	Der Ausfall des Guarding-Masters wurde erkannt (Node Guard Event)		

Tabelle 37: Emergency: Manufacturer Specific Error Field

9.10 Ausfallüberwachung

Da sich in einem CANopen Netzwerk die Knoten bei der ereignisgesteuerten Übertragung nicht regelmäßig melden, stehen für die Ausfallüberwachung Heartbeat- sowie Nodeguarding- / Lifeguarding-Mechanismen zur Verfügung. Es kann nur eine der beiden Überwachungsmethoden zum Einsatz kommen.

9.10.1 Nodeguarding / Lifeguarding

Nodeguarding ist die Überwachung eines oder mehrerer Knoten durch den NMT-Master. Dazu sendet dieser periodisch ein RTR-Telegramm an den zu überwachenden Slave, welcher darauf mit seinem Status sowie einem Toggle-Bit antwortet. Falls Status oder Toggle-Bit nicht mit den vom Guarding-Master erwarteten Daten übereinstimmen oder falls keine Antwort erfolgt, geht der Master von einem Fehler des Slaves aus.

Mit diesem Mechanismus kann der zu überwachende Knoten auch den Ausfall des Guarding-Masters erkennen. Dazu werden zwei Parameter verwendet. Die Intervallzeit, mit welcher der Guarding-Master den zu überwachenden Sensor abfragt, ist die "Guard Time" (100Ch). Ein zweiter Parameter, der "Life Time Factor" (100Dh), definiert einen Multiplikator, nach welchem die Verbindung als unterbrochen gilt. Diese Zeit wird als Lebenszeit des Knotens ("Node Life Time") bezeichnet.

"Node Life Time" = "Guard Time" x "Life Time Factor"

Sollte der Sensor innerhalb dieser parametrierten Zeit keine Guarding-Anforderung vom Master erhalten, so geht er von einem Masterausfall aus, sendet ein Emergency Telegramm und geht in den Zustand Pre-Operational zurück. Falls einer der beiden Parameter "O" ist (Default-Einstellung), erfolgt keine Überwachung des Masters (kein Lifeguarding).

9.10.2 Heartbeat

Heartbeat ist ein Ausfallüberwachungsmechanismus, der ohne die Verwendung von RTR-Telegrammen auskommt. Dazu sendet der Sensor zyklisch eine Heartbeat-Nachricht, welche den Status des Gerätes enthält. Der Master kann diese Telegramme überwachen. Heartbeat wird aktiviert, sobald im Register Heartbeat-Intervallzeit (1017h) ein Wert größer "O" eingetragen ist.

Hinweis:

Heartbeat hat einen erheblichen Einfluss auf die Buslast des CANopen Netzwerkes – erzeugt aber nur eine halb so hohe Buslast wie Nodeguarding / Lifeguarding.

9.11 LSS: Layer Setting Service (nach CiA DSP-305)

9.11.1 Einstellung von Node-ID und Baudrate

Die Einstellung der Teilnehmeradresse (Node-ID) und der Baudrate wird über LSS (Layer Setting Service) realisiert. Für die Kommunikation zwischen LSS-Master und LSS-Slave (Sensor) dienen zwei CAN-Identifier (7E5h und 7E4h). Der Sensor besitzt eine eindeutige 128 Bit LSS-Adresse, über die er im CAN-Netzwerk angesprochen werden kann. Diese setzt sich aus den drei 32 Bit Parametern des Identity-Objekts 1018h und der Seriennummer zusammen:

Vendor-ID	0000 0159h	(Herstellerkennung: GEMAC Chemnitz GmbH)
Produkt-Code	0000 6DE8h	(6DE8h = 28136dec = PR- 28136 -00)
Revisionsnummer	0000 0000h	(00h = 0dec = PR-28136- 00)
Seriennummer	xxxx xxxxh	(Seriennummer des Sensors → Typenschild)

Die Standardwerte für Node-ID und Baudrate bei Auslieferung (Werksparameter) sind:

Node-ID 10

Baudrate automatische Baudratenerkennung

Index	Baudrate
0	1 MBit/s
1	800 kBit/s
2	500 kBit/s
3	250 kBit/s
4	125 kBit/s
5	unbenutzt
6	50 kBit/s

Index	Baudrate
7	20 kBit/s
8	10 kBit/s
9	Automatische Baudratenerkennung

Tabelle 38: LSS Baudratenindex nach CiA DSP-305

9.12 Automatische Baudratenerkennung (nach CiA AN-801)

Die automatische Baudratenerkennung dient der automatischen Einstellung der Baudrate des Sensors auf die im Netzwerk vorhandene Baudrate. Dazu befindet sich der Sensor nach dem Einschalten der Stromversorgung im sogenannten "Listen-Only"-Modus, in welchem er die auf dem CAN-Bus befindlichen Telegramme beobachtet, aber selbst kein Acknowledge gibt. In diesem Zustand testet er alle verfügbaren Baudraten. Bei Empfang eines gültigen CAN-Telegramms ist die richtige Baudrate gefunden und wird eingestellt. Anschließend startet der Sensor neu, meldet sich mit einer Boot-Up Nachricht und geht in den Modus Pre-Operational (siehe auch Abbildung 12).

Hinweis:

Für die korrekte Funktion der automatischen Baudratenerkennung müssen Telegramme von anderen Bus-Teilnehmern vorhanden sein.

10 Funktionsbeschreibung SAE J1939 Schnittstelle

10.1 Telegrammformat

SAE J1939 verwendet erweiterte 29bit Identifier für die Kommunikation auf dem CAN-Bus. Allgemein kann man Telegramme unterscheiden, die zwischen zwei Teilnehmern mit direkter Adressierung ausgetauscht werden (PDU-Format 1) und Broadcast-Nachrichten, welche an alle Teilnehmer auf dem Bus gesendet werden (PDU-Format 2).

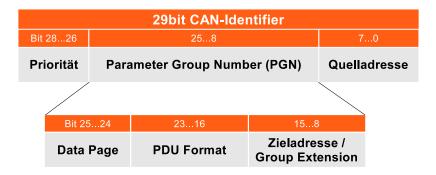


Abbildung 14: SAE J1939 CAN-Identifier

Für Punkt-zu-Punkt Nachrichten sind die Werte 00h bis EFh für das PDU-Format reserviert; die PGN enthält außerdem die Zieladresse. Broadcast-Nachrichten werden mit Werten von F0h bis FFh für das PDU-Format versendet. Durch das Feld Group Extension wird die Anzahl verfügbarer Broadcast-Nachrichten erhöht. Der Sensor verwendet Broadcast-Nachrichten mit PDU-Format 2 für das Aussenden der Prozessdaten (Winkelwerte, Rohdaten, siehe Kapitel 10.3 "Prozessdaten (Transmit PGNs)"). Zur Konfiguration wird die direkte Adressierung im PDU-Format 1 unter Verwendung der Proprietary A PGN unterstützt (siehe Kapitel 10.5 "Sensor Konfiguration").

10.2 Gerätename und Adresse

Der Sensor startet bei Werkseinstellungen mit der Adresse 128 (80h). Es wird die dynamische Adressvergabe unterstützt. Beim Start sendet der Sensor ein entsprechendes Address-Claim-Telegramm mit der verwendeten Adresse. Dieses Telegramm enthält den 64bit Gerätenamen, wodurch der Sensor eindeutig identifiziert werden kann. Anhand des Namens wird außerdem die Priorität auf dem Bus festgelegt.

Der 64bit Gerätename enthält folgende Felder:

- Arbitrary Address Capable, Unterstützung der dynamischen Adressvergabe (1 Bit)
- Industry Group (3 Bit)
- Vehicle System Instance (4 Bit)
- Vehicle System (7 Bit)
- Function (8 Bit)
- Function Instance (5 Bit)
- ECU Instance (3 Bit)
- Manufacturer Code (11 Bit)
- Identity Number (21 Bit)

Der Manufacturer Code stellt die Herstellerkennung GEMAC Chemnitz GmbH dar (Wert 854 dezimal). Die Identity Number entspricht der SAE J1939 Seriennummer des Sensors.

Ab Werk sind folgende Felder des Gerätenamens voreingestellt:

Manufacturer Code: 854 (GEMAC Chemnitz GmbH)

Identity Number: SAE J1939 Seriennummer des Sensors

Industry Group: 0Vehicle System: 0

Function: 145 (Inertial Sensor)

Die restlichen Bereiche können durch den Benutzer über das Konfigurationsprotokoll geändert werden (siehe Kapitel 10.5 "Sensor Konfiguration").

10.3 Prozessdaten (Transmit PGNs)

Für das Senden der Messdaten unterstützt der Sensor die PGNs 61459 (Slope Sensor Information) und 61481 (Slope Sensor Information 2) für die Übermittlung der Winkelwerte sowie PGN 61482 (Angular Rate Information) und PGN 61485 (Acceleration Sensor). Außerdem sind für weitere Ausgabeformate Proprietary B Nachrichten (Broadcast) verfügbar.

Das Gerät unterstützt 11 verschiedene Parametergruppen (TxPGNs):

- TxPGN1 61459 Slope Sensor Information
- TxPGN2 61481 Slope Sensor Information 2 (extended range)
- TxPGN3 61482 Angular Rate Information
- TxPGN4 61485 Acceleration Sensor
- Proprietary B TxPGN5 65280 Lotwinkel longitudinal (x-Achse) und lateral (y-Achse)
- Proprietary B TxPGN6 65281 Euler-Winkel Pitch & Roll
- Proprietary B TxPGN8 65283 Beschleunigung x, y, z
- Proprietary B TxPGN9 65284 Drehrate x, y, z
- Proprietary B TxPGN10 65285 Beschleunigung ungefiltert x, y, z
- Proprietary B TxPGN11 65286 Gyro-Winkel x, y, z

Die Aktivierung/Deaktivierung des Sendens, die Zykluszeit und die Priorität der Nachrichten, sowie bei den Proprietary B PGNs das LSB der PG-Nummer können über Konfigurationsnachrichten eingestellt werden. Per Default sind TxPGNs 2 (Slope Sensor Information 2) und 5 (Lotwinkel) mit einer Zykluszeit von 10 ms aktiviert.

Der Inhalt der Proprietary B PGNs kann durch Mapping der Signale durch den Benutzer angepasst werden. In den folgenden Tabellen sind die Standardbelegungen aufgezeigt:

PGN	Name	SPN Name	SPN Position (Bit)	SPN Breite (Bit)	Auflösung	Offset	Daten- bereich
	Slope Sensor Information	Pitch Angle	0	16	0,002°/bit	-64°	-6464,51°
		Roll Angle	16	16	0,002°/bit	-64°	-6464,51°
		Pitch Rate	32	16	0,002°/s/bit	-64°/s	-6464,51°/s

PGN	Name	SPN Name	SPN Position (Bit)	SPN Breite (Bit)	Auflösung	Offset	Daten- bereich
		Pitch Angle Status	48	2	4 States	0	03
		Roll Angle Status	50	2	4 States	0	03
		Pitch Rate Status	52	2	4 States	0	03
		Sensorfusion Status	54	2	4 States	0	03
		Latenz	56	8	0,5 ms/bit	0	0125 ms

Tabelle 39: Transmit PGN 1 - 61459 Slope Sensor Information

Latenz beschreibt nur die interne Latenz des Sensors und ist als Zeit zwischen Datenaufnahme im Sensor und Ausgabe auf die CAN-Schnittstelle definiert. Zusätzliche Latenzen, die durch den CAN-Bus und die allgemeine Systemimplementierung entstehen, bleiben unberücksichtigt.

PGN	Name	SPN Name	SPN Position (Bit)	SPN Breite (Bit)	Auflösung	Offset	Daten- bereich
61481	Slope Sensor Information 2	Pitch Angle (ext. Range)	0	24	1/32768°/bit	-250°	-250252° (-9090°)
		Roll Angle (ext. Range)	24	24	1/32768°/bit	-250°	-250252°
		Pitch Angle Sensorfusion	48	2	4 States	0	03
		Pitch Angle Status	50	2	4 States	0	03
		Roll Angle Sensorfusion	52	2	4 States	0	03
		Roll Angle Status	54	2	4 States	0	03
		Latenz	56	8	0,5 ms/bit	0	0125 ms

Tabelle 40: Transmit PGN 2 - 61481 Slope Sensor Information 2

PGN	Name	SPN Name	SPN Position (Bit)	SPN Breite (Bit)	Auflösung	Offset	Daten- bereich
61482	Angular Rate Information	Pitch Angle (ext. Range)	0	16	1/128°/s/bit	-250°/s	- 250250°/s
		Roll Angle (ext. Range)	16	16	1/128°/s/bit	-250°/s	- 250250°/s
		Pitch Angle Sensorfusion	32	16	1/128°/s/bit	-250°/s	- 250250°/s
		Pitch Angle Status	48	2	4 States	0	03
		Roll Angle Sensorfusion	50	2	4 States	0	03
		Roll Angle Status	52	2	4 States	0	03
		Latenz	56	8	0,5 ms/bit	0	0125 ms

Tabelle 41: Transmit PGN 3 - 61482 Angular Rate Information

PGN	Name	SPN Name	SPN Position (Bit)	SPN Breite (Bit)	Auflösung	Offset	Daten- bereich
61485	61485 Acceleration Sensor	Beschleunigung lateral (Y-Achse)	0	16	0,01 m/s ² /bit	- 320m/s²	- 8080m/s²
		Beschleunigung longitudinal (X-Achse)	16	16	0,01 m/s²/bit	- 320m/s ²	- 8080m/s²
		Beschleunigung vertikal (Z-Achse)	32	16	0,01 m/s²/bit	- 320m/s ²	- 8080m/s²
		Beschleunigung lateral Status	48	2	4 States	0	03
		Beschleunigung longitudinal Status	50	2	4 States	0	03
		Beschleunigung vertikal Status	52	2	4 States	0	03
		Unterstützte Ausgaberate	54	2	4 States	0	03

Tabelle 42: Transmit PGN 4 - 61485 Acceleration Sensor

PGN	Name	SPN Name	SPN Nr.	SPN Position (Bit)	SPN Breite (Bit)	Auflösung	Offset	Daten- bereich
65280	B TxPGN5	Neigungswert longitudinal (X- Achse)	1	0	16	0,01°/bit	0°	-9090°
	Lotwinkel	Neigungswert lateral (Y-Achse)	2	16	16	0,01°/bit	0°	-9090°
		Statischer Nei- gungswert longitu- dinal (X-Achse)	22	32	16	0,01°/bit	0°	-9090°
		Statischer Nei- gungswert lateral (Y-Achse)	23	48	16	0,01°/bit	0°	-9090°

Tabelle 43: Transmit PGN 5 - Lotwinkel

PGN	Name	SPN Name	SPN Nr.	SPN Position (Bit)	SPN Breite (Bit)	Auflösung	Offset	Daten- bereich
65281	65281 Proprietary B TxPGN6 Euler-Winkel	Euler Winkel Pitch	3	0	16	0,01°/bit	0°	-9090°
		Euler Winkel Roll	4	16	16	0,01°/bit	0°	-180180°
		Statischer Euler Winkel Pitch	24	32	16	0,01°/bit	0°	-9090°
		Statischer Euler Winkel Roll	25	48	16	0,01°/bit	0°	-180180°

Tabelle 44: Transmit PGN 6 - Euler Winkel

PGN	Name	SPN Name	SPN Nr.	SPN Position (Bit)	SPN Breite (Bit)	Auflösung	Offset	Daten- bereich
65283	Proprietary B TxPGN8 Beschleunigung	Beschleunigung X-Achse	10	0	16	1/16384 / bit	0	-2g2g
		Beschleunigung Y-Achse	11	16	16	1/16384 / bit	0	-2g2g
		Beschleunigung Z-Achse	12	32	16	1/16384 / bit	0	-2g2g

Tabelle 45: Transmit PGN 8 - Beschleunigung

PGN	Name	SPN Name	SPN Nr.	SPN Position (Bit)	SPN Breite (Bit)	Auflösung	Offset	Daten- bereich
65284	5284 Proprietary B TxPGN9 Drehrate	Drehrate X-Achse	16	0	16	7/800°/s / bit	0	-250250°/s
		Drehrate Y-Achse	17	16	16	7/800°/s / bit	0	-250250°/s
Diemate	Drehrate Z-Achse	18	32	16	7/800°/s / bit	0	-250250°/s	

Tabelle 46: Transmit PGN 9 - Drehrate

PGN	Name	SPN Name	SPN Nr.	SPN Position (Bit)	SPN Breite (Bit)	Auflösung	Offset	Daten- bereich
65285	B TxPGN10 Beschleuni- gung unge-	Beschleunigung X-Achse ungefiltert	13	0	16	1/16384 / bit	0	-2g2g
		Beschleunigung Y-Achse ungefiltert	14	16	16	1/16384 / bit	0	-2g2g
filtert	Beschleunigung Z-Achse ungefiltert	15	32	16	1/16384 / bit	0	-2g2g	

Tabelle 47: Transmit PGN 10 - Beschleunigung ungefiltert

PGN	Name	SPN Name	SPN Nr.	SPN Position (Bit)	SPN Breite (Bit)	Auflösung	Offset	Daten- bereich
65286	B TxPGN11 Gyro-Winkel	Gyro-Winkel X-Achse	19	0	16	0,01° / bit	0°	-180°180°
		Gyro-Winkel Y-Achse	20	16	16	0,01° / bit	0°	-180°180°
		Gyro-Winkel Z-Achse	21	32	16	0,01° / bit	0°	-180°180°

Tabelle 48: Transmit PGN 11 - Gyro-Winkel

Die Bedeutung der Statusbits der in den PGNs beschriebenen Ausgabewerte ist in Tabelle 49 erläutert.

Zustand der Status Bits	Bedeutung
00	Das beschriebene Datum ist gültig und liegt innerhalb der Spezifikation des Sensors.
01	Die auf den Sensor einwirkenden Kräfte liegen außerhalb der Spezifikation. Das beschriebene Datum ist ungültig.
10	Fehler
11	Nicht verfügbar

Tabelle 49: Status Bits im PGN

10.4 PGN Mapping


Der Inhalt der proprietary B PGNs kann durch Mapping angepasst werden. Dafür wird jedem Signal, welches ausgegeben werden kann, eine SPN (1 Byte) zugewiesen. Je PGN können bis zu 4 Signale gemappt werden. Die für das Mapping verfügbaren Signale sind in Tabelle 50 aufgelistet. Die Konfiguration erfolgt durch die entsprechenden in Kapitel 10.5 "Sensor Konfiguration" aufgelisteten Telegramme.

SPN	Name	Format	Auflösung	Wertebereich
0	Nicht verwendet	-	-	0
1	Lotwinkel X	16bit signed	0,01 deg/bit	-90,00° 90,00°
2	Lotwinkel Y	16bit signed	0,01 deg/bit	-90,00° 90,00°
3	Euler-Winkel: Pitch	16bit signed	0,01 deg/bit	-90,00° 90,00°
4	Euler-Winkel: Roll	16bit signed	0,01 deg/bit	-180,00° 180,00°
10	Beschleunigung: x	16bit signed	1/16384 g/bit	-2g 2g
11	Beschleunigung: y	16bit signed	1/16384 g/bit	-2g 2g
12	Beschleunigung: z	16bit signed	1/16384 g/bit	-2g 2g
13	Beschleunigung ungefiltert: x	16bit signed	1/16384 g/bit	-2g 2g
14	Beschleunigung ungefiltert: y	16bit signed	1/16384 g/bit	-2g 2g
15	Beschleunigung ungefiltert: z	16bit signed	1/16384 g/bit	-2g 2g
16	Drehrate: x	16bit signed	7/800 deg/s/bit	-250°/s 250°/s
17	Drehrate: y	16bit signed	7/800 deg/s/bit	-250°/s 250°/s
18	Drehrate: z	16bit signed	7/800 deg/s/bit	-250°/s 250°/s
19	Gyro Winkel: x	16bit signed	0,01 deg/bit	-180,00° 180,00°
20	Gyro Winkel: y	16bit signed	0,01 deg/bit	-180,00° 180,00°
21	Gyro Winkel: z	16bit signed	0,01 deg/bit	-180,00° 180,00°
22	Lotwinkel X statisch	16bit signed	0,01 deg/bit	-90,00° 90,00°
23	Lotwinkel Y statisch	16bit signed	0,01 deg/bit	-90,00° 90,00°
24	Euler-Winkel Pitch statisch	16bit signed	0,01 deg/bit	-90,00° 90,00°
25	Euler-Winkel Roll statisch	16bit signed	0,01 deg/bit	-180,00° 180,00°
26	Temperatur	16bit signed	0,1 K//bit	-40,0 °C 100,0 °C

Tabelle 50: SAE J1939 proprietary B Mapping Signale

10.5 Sensor Konfiguration

Für die Konfiguration des Sensors wird Proprietary A PGN 61184 (Punkt-zu-Punkt) verwendet. Der Datenteil des Telegramms besitzt folgenden Aufbau:

INDEX Parameter-Index (siehe Tabelle 51)

CMD Command (0x01: Lesen, 0x02: Schreiben)

STATUS Status (nur in Antwort vom Sensor gültig, siehe Tabelle 54)

DATAO...DATA3 Datenteil 0 bis 4 Bytes (gültige Länge abhängig vom Format des jeweiligen Index)

Index	Parameter	Format	Werte	Zugriff
0x1000	Vendor-ID	UNS32	-	ro
0x1001	Produkt-ID	UNS32		ro
0x1002	Produkt-Revision	UNS32	-	ro
0x1003	Seriennummer	UNS32	-	ro
0x1004	Firmware-Version	UNS16	+	ro
0x1005	Geräte-ID	UNS32	-	
0x1100	Gerätestatus	UNS8	+	ro
0x2000	CAN Baudrate	UNS16	0: Autobaud 250 (default) 10, 20, 50, 100, 125, 500, 800, 1000	rw
0x2001	Geräteadresse	UNS8	128 (default)	rw
0x2002	automatic Bus-Off Recovery	UNS8	0: (default) deaktiviert 1: aktiviert	rw
0x2010	Arbitrary Address Capable	UNS8	0: address claiming deaktiviert 1: address claiming aktiviert (default)	rw
0x2011	Industry Group	UNS8	0	ro
0x2012	Vehicle system instance	UNS8	015 (default: 0)	rw
0x2013	Vehicle system	UNS8	0	ro
0x2014	Function	UNS8	145	ro
0x2015	Function Instance	UNS8	031 (default: 0)	rw
0x2016	ECU Instance	UNS8	07 (default: 0)	rw
0x2100	Tiefpassfilter Filtertyp	UNS16	0: deaktiviert 1: Butterworth Filter 2: kritisch gedämpft (default)	rw
0x2101	Tiefpassfilter Grenzfrequenz	UNS16	10025000 mHz default: 5000 mHz	rw
0x2110	Sensorfusion enable	UNS8	0: Sensorfusion deaktiviert 1: Sensorfusion aktiviert (default)	rw
0x2111	Sensorfusion Störunterdrückungszeit	UNS16	10010000 ms default: 5000 ms	rw
0x2120	dynamische	UNS8	0: deaktiviert	rw

Index	Parameter	Format	Werte	Zugriff
	Gyro-Offsetkorrektur		1: aktiviert (default)	
0x2200	Nullpunktoffset X automatisch	UNS8	Winkel X Null setzten 0: Offset zurücksetzen (absolute Messung) 1: Nullsetzen (relative Messung)	wo
0x2201	Nullpunktoffset X	INT16	Nullpunktoffset X	rw
0x2202	Invertierung X-Achse	UNS8	0: X-Achse nicht invertiert 1: X-Achse invertiert	rw
0x2210	Nullpunktoffset Y automatisch	UNS8	Winkel Y Null setzten 0: Offset zurücksetzen (absolute Messung) 1: Nullsetzen (relative Messung)	wo
0x2211	Nullpunktoffset Y	INT16	Nullpunktoffset Y	rw
0x2212	Invertierung Y-Achse	UNS8	0: Y-Achse nicht invertiert 1: Y-Achse invertiert	rw
0x2220	Gyro-Winkel X-Achse lesen/schreiben	INT16	-1800017999 entspricht -180,00 bis 179,99°	rw
0x2221	Gyro-Winkel Y-Achse lesen/schreiben	INT16	-1800017999 entspricht -180,00 bis 179,99°	rw
0x2222	Gyro-Winkel Z-Achse lesen/schreiben	INT16	-1800017999 entspricht -180,00 bis 179,99°	rw
0x2223	Gyro-Winkel zurücksetzen	UNS8	Schreiben eines beliebigen Wertes setzt die Gyro Winkel aller 3 Achsen auf Null	wo
0x2300	Parameter speichern	VSTR	'SAVE' (45564153h) schreiben um Konfiguration dauerhaft zu speichern	wo
0x2301	Parameter laden	VSTR	'LOAD' (44414F4Ch) schreiben um Parameter aus dem Permanentspeicher zu laden	wo
0x2302	Defaultparameter laden	VSTR	'CLR' (524C43h) schreiben um Werks- einstellungen wiederherzustellen	wo
0x2303	Reset ausführen	VSTR	'RST' (545352h) schreiben um Werks- einstellungen wiederherzustellen	wo
Konfigura	ation TxPGNs			
0x3000	TxPGN1 Zykluszeit PGN 61459 Slope Sensor Information	UNS16	0: deaktiviert (default) 1010000 ms Zykluszeit	rw
0x3001	TxPGN1 Priorität PGN 61459 Slope Sensor Information	UNS8	07 (default: 3)	rw
0x3010	TxPGN2 Zykluszeit PGN 61481 Slope Sensor Information 2	UNS16	0: deaktiviert (default) 1010000 ms Zykluszeit	rw
0x3011	TxPGN2 Priorität PGN 61481 Slope Sensor Information 2	UNS8	07 (default: 3)	rw
0x3020	TxPGN3 Zykluszeit PGN 61482 Angular Rate Information	UNS16	0: deaktiviert (default) 1010000 ms Zykluszeit	rw
0x3021	TxPGN3 Priorität PGN 61482 Angular Rate Information	UNS8	07 (default: 3)	rw
0x3030	TxPGN4 Zykluszeit PGN 61485 Acceleration Sensor	UNS16	0: deaktiviert (default) 1010000 ms Zykluszeit	rw

Index	Parameter	Format	Werte	Zugriff
0x3031	TxPGN4 Priorität PGN 61485 Acceleration Sensor	UNS8	07 (default: 3)	rw
0x3040	TxPGN5 Zykluszeit PGN 65280 (default: Lotwinkel)	UNS16	0: deaktiviert 1010000 ms Zykluszeit default: 10 ms	rw
0x3041	TxPGN5 Priorität PGN 65280 (default: Lotwinkel)	UNS8	07 (default: 3)	rw
0x3042	TxPGN5 LSB PGN 65280 (default: Lotwinkel)	UNS8	0x000xFF default: 0x00	rw
0x3048	TxPGN5 Mapping PGN 65280	UNS32	026 je Byte (default: 0x17160201)	rw
0x3050	TxPGN6 Zykluszeit PGN 65281 (default: Euler-Winkel)	UNS16	0: deaktiviert (default) 1010000 ms Zykluszeit	rw
0x3051	TxPGN6 Priorität PGN 65281 (default: Euler-Winkel)	UNS8	07 (default: 3)	rw
0x3052	TxPGN6 LSB PGN 65281 (default: Euler-Winkel)	UNS8	0x000xFF default: 0x01	rw
0x3058	TxPGN6 Mapping PGN 65281	UNS32	026 je Byte (default: 0x19180403)	rw
0x3060	TxPGN7 Zykluszeit PGN 65282 (default: unbenutzt)	UNS16	0: deaktiviert (default) 1010000 ms Zykluszeit	rw
0x3061	TxPGN7 Priorität PGN 65282 (default: unbenutzt)	UNS8	07 (default: 3)	rw
0x3062	TxPGN7 LSB PGN 65282 (default: unbenutzt)	UNS8	0x000xFF default: 0x02	rw
0x3068	TxPGN7 Mapping PGN 65282	UNS32	026 je Byte (default: 0x0000000)	rw
0x3070	TxPGN8 Zykluszeit PGN 65283 (default: Beschleunigung x, y, z)	UNS16	0: deaktiviert (default) 1010000 ms Zykluszeit	rw
0x3071	TxPGN8 Priorität PGN 65283 (default: Beschleunigung x, y, z)	UNS8	07 (default: 3)	rw
0x3072	TxPGN8 LSB PGN 65283 (default: Beschleunigung x, y, z)	UNS8	0x000xFF default: 0x03	rw
0x3078	TxPGN8 Mapping PGN 65283	UNS32	026 je Byte (default: 0x000C0B0A)	rw
0x3080	TxPGN9 Zykluszeit PGN 65284 (default: Drehrate x, y, z)	UNS16	0: deaktiviert (default) 1010000 ms Zykluszeit	rw
0x3081	TxPGN9 Priorität PGN 65284 (default: Drehrate x, y, z)	UNS8	07 (default: 3)	rw
0x3082	TxPGN9 LSB PGN 65284 (default: Drehrate x, y, z)	UNS8	0x000xFF default: 0x04	rw
0x3088	TxPGN9 Mapping PGN 65284	UNS32	026 je Byte (default: 0x00121110)	rw

Index	Parameter	Format	Werte	Zugriff
0x3090	TXPGN10 Zykluszeit PGN 65285 (default: Beschleunigung ungefiltert x, y, z)	UNS16	0: deaktiviert (default) 1010000 ms Zykluszeit	rw
0x3091	TXPGN10 Priorität PGN 65285 (default: Beschleunigung ungefiltert x, y, z)	UNS8	07 (default: 3)	rw
0x3092	TXPGN10 LSB PGN 65285 (default: Beschleunigung ungefiltert x, y, z)	UNS8	0x000xFF default: 0x05	rw
0x3098	TxPGN10 Mapping PGN 65285	UNS32	026 je Byte (default: 0x000F0E0D)	rw
0x30A0	TXPGN11 Zykluszeit PGN 65286 (default: Gyro-Winkel x, y, z)	UNS16	0: deaktiviert (default) 1010000 ms Zykluszeit	rw
0x30A1	TXPGN11 Priorität PGN 65286 (default: Gyro-Winkel x, y, z)	UNS8	07 (default: 3)	rw
0x30A2	TXPGN11 LSB PGN 65286 (default: Gyro-Winkel x, y, z)	UNS8	0x000xFF default: 0x06	rw
0x30A8	TxPGN11 Mapping PGN 65286	UNS32	026 je Byte (default: 0x00151413)	rw
Prozessd	aten			
0x5000	Winkelwerte lesen	UNS32	Winkelausgabe vgl. TxPGN5	ro
0x5001	Temperatur lesen	INT8	Temperatur in °C	ro

Tabelle 51: Konfigurationsparameter

Zum dauerhaften Speichern der Parameter muss das "SAVE" Kommando (Index 0x2300) gesendet werden. Die CAN-Baudrate und Geräteadresse werden beim Schreiben im Permanentspeicher abgelegt, jedoch nicht sofort übernommen. Zur Übernahme der neuen Parameter ist ein Neustart des Sensors notwendig.

10.5.1 Beispiele SAE J1939 Kommunikation

	CAN-	D0	D1	D2	D3	D4	D5	D6	D7
	Identifier	INDEX		CMD	STATUS	DATAO	DATA1	DATA2	DATA3
Anfrage	0x0CEF8001	0x04	0x10	0x01	0x00	0x00	0x00	0x00	0x00
Antwort	0x0CEF0180	0x04	0x10	0x01	0x00	0x01	0x00	0x00	0x00

Tabelle 52: Firmware-Version des Sensors mit Adresse 128 lesen

	CAN-		D1	D2	D3	D4	D5	D6	D7
	Identifier	INDEX		CMD	STATUS	DATAO	DATA1	DATA2	DATA3
Anfrage	0x0CEF8001	0x10	0x21	0x02	0x00	0x01	0x00	0x00	0x00
Antwort	0x0CEF0180	0x10	0x21	0x02	0x00	0x01	0x00	0x00	0x00

Tabelle 53: Aktivieren der Sensorfusion bei Sensor mit Adresse 128

10.5.2 Bedeutung Statusbyte

Wert	Bedeutung
0x00	Ok, Befehl erfolgreich
0xF0	ungültiger Index
0xF1	ungültiger Parameter, außerhalb Wertebereich
0xF2	EEPROM Lese-/Schreibfehler

Tabelle 54: Statusbyte

11 Wartung und Kundendienst

11.1 Kalibrierung

Jeder GEMAC MOTUS® Greenline XE wird vor der Auslieferung standardmäßig vom Hersteller GEMAC Chemnitz GmbH kalibriert.

Selbst die hochwertigsten Sensoren müssen in bestimmten Intervallen neu kalibriert werden, um weiterhin zuverlässig sichere und fehlerfreie Messergebnisse liefern zu können. Wir empfehlen Ihnen daher eine regelmäßige Rekalibrierung. Diese erfolgt ausschließlich vom Hersteller GEMAC Chemnitz GmbH.

11.2 Kundendienst

11.2.1 Rücksendung

Die Rücksendung des GEMAC MOTUS® Greenline XE für Kalibrier- oder Reparaturarbeiten darf nur in der Originalverpackung oder in einer gleichwertigen Verpackung erfolgen. Bitte geben Sie eine kurze Fehlerbeschreibung und Ihre Telefonnummer für Rückfragen an.

11.2.2 Support

Bei technischen Rückfragen geben Sie bitte Seriennummer und Firmwareversionsnummer des Sensors an.

Hersteller: GEMAC Chemnitz GmbH

Zwickauer Str. 227 09116 Chemnitz

Tel.: +49 371 3377-0

Fax: +49 371 3377-272

Web: www.gemac-chemnitz.com
E-Mail: info@gemac-chemnitz.de

11.2.3 Gewährleistung und Haftungseinschränkung

Für den GEMAC MOTUS® Greenline XE besteht eine Gewährleistung von 24 Monaten, welche mit dem Lieferdatum beginnt. Innerhalb dieser Zeit anfallende Reparaturen, die unter die Gewährleistungspflicht des Herstellers fallen, werden kostenfrei ausgeführt. Schäden, die durch unsachgemäßen Gebrauch oder durch Einsatz außerhalb der in diesem Handbuch angegebenen Spezifikation verursacht werden, fallen nicht unter die Verpflichtungen.

Die GEMAC Chemnitz GmbH haftet für Folgeschäden nur im Falle des Vorsatzes oder der groben Fahrlässigkeit, die aus der Verwendung des Produktes entstehen.

Es gelten die Allgemeinen Geschäftsbedingungen der GEMAC Chemnitz GmbH.

12 Sensorkonfiguration preliminary

12 Sensorkonfiguration

12.1 Neigungssensor-Programmieradapter

Der separat erhältliche Sensor-Programmieradapter (ISPA2 - PR-23999-10) dient der komfortablen Einstellung des Sensors. Der Programmieradapter wird über USB mit einem PC verbunden. Über das beiliegende CAN-Adapterkabel erfolgt die Verbindung des Sensors mit dem Programmieradapter. Der Sensor wird über diesen mit Spannung versorgt. Es ist keine zusätzliche Spannungsversorgung notwendig.

Abbildung 15: Sensor-Programmieradapter

12.2 PC-Software ISDControl

Über die dem Sensor-Programmieradapter beiliegende PC-Software ISDControl erfolgt die Parametrierung aller einstellbaren Werte. Jede Konfiguration kann in einer Datei gespeichert werden.

Eigenschaften:

- komfortable Konfiguration aller Parameter des Sensors
- 3D-Darstellung und Anzeige der aktuellen Neigungswinkel
- Oszilloskop-Darstellung der aktuellen Neigungswinkel für Lotwinkel
- Möglichkeit zum Firmwaredownload
- Automatische Sensorsuche bei unbekannten Kommunikationsparametern

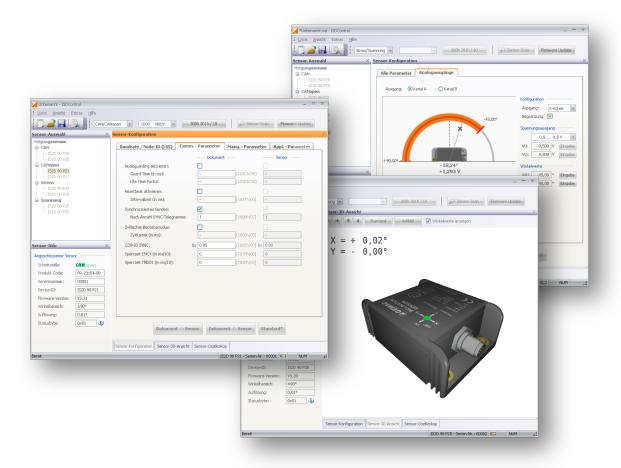


Abbildung 16: PC-Software

13 Bestellinformationen preliminary

13 Bestellinformationen

Artikelnummer	Produkttyp	Schnittstelle (Standard)	Lochmuster	Achsen/Messbereich		
PR-28036-00-00	XE6XP360-C	CAN 2.0 A und B	4-Loch			
PR-28026-00-00	XE6ZP360-C	CAN 2.0 A und B	2-Loch			
PR-28136-00-00	XE6XP360-0	CANopen	4-Loch	0 dimensional 1000 11000		
PR-28126-00-00 XE6ZP360-0		CANopen	2-Loch	2-dimensional, ±90°, ±180°		
PR-28736-00-00	XE6XP360-J	SAE J1939	4-Loch			
PR-28726-00-00	XE6ZP360-J	SAE J1939	2-Loch			
PR-23999-10	ISPA2	Sensor-Programmieradapter (bestehend aus Programmieradapter, Kabel und PC-Software)				

Tabelle 55: Bestellinformationen