

GEMAC MOTUS®

Hochgenaue Orientierungsberechnung mit dem speziell auf Bewegungserfassung optimierten "Enhanced Kalman Filter".

Die erste Power-IMU für mobile Power-Maschinen

Unsere konfigurierbare Sensor-Messeinheit GEMAC MOTUS° ermöglicht die 6-Achs-Bewegungserfassung an Mobilen Power-Maschinen, wie Baumaschinen, Landmaschinen, Forstmaschinen, Kran- und Hebetechnik sowie bei Schiffen.

Unser eigens entwickelter Sensor-Fusions-Algorithmus übernimmt die hochgenaue Orientierungsberechnung, unterstützt durch Sensorfusionsfilter, die extern wirkende Beschleunigungen unterdrücken. Durch die Kombination und Verrechnung der sechs Messwerte braucht nur noch ein Messsystem für unterschiedlichste Anforderungen integriert werden. Die Genauigkeit der Neigungsmessung beinhaltet eine kompensierte Querempfindlichkeit und ist durch die 3D-Messung unabhängig vom lokalen Erdschwerefeld.

Leistungsumfang

- Automatische Konfiguration der Anbaulage
- Flexible Nullpunkt-Einstellung
- Komfortable Parametrierung mit Sensor-Programmieradapter
- Konfiguration der Sensorfusion
- Konfiguration der Ausgabedaten bei SAE J1939
- CANopen Autostart

Anwendungsbereiche (typisch)

Baumaschinen

Forstmaschinen

Landmaschinen

Hebetechnik

Schiffe

Sensor Portfolio - Gesamtüberblick

Performance Klasse	Genauigkeit	GEMAC MOTUS° Greenline	GEMAC MOTUS° Blackline	GEMAC MOTUS°	
F	statisch	±0,1° bis ±0,5°	-	-	
E economic	dynamisch	±0,8°	-	-	
B basic	statisch	-	±0,3°	±0,3°	
	dynamisch	-	±0,5°	±0,5°	
C classic	statisch	-	±0,1°	±0,1°	
O Glassic	dynamisch	-	±0,5°	±0,25°	
X Inertiale Messeinheit (IMU) N Neigungssensor dynamisch S Neigungssensor statisch		XE NE SE	SB SC NB NC XB XC	NB NC XB XC IB	

Varianten GEMAC MOTUS°

Erfassung der Neigung (statisch und dynamisch)

Varianten	NB	NC
Eigenschaften		Neigung (statisch und dynamisch)
Messbereich		±90°/±180° (360°)²
Auflösung		0,01°
Temperaturkoeffizient	±0,01°/K	±0,0016°/K
Statische Genauigkeit¹	±0,3°	±0,1°
Dynamische Genauigkeit¹	±0,5°	±0,25°
In-Run Bias Stability	-	-
Angle Random Walk (ARW)	-	-
Interface	CAN, CA	ANopen, SAE J1939, Strom 420 mA, Spannung 010 V

Erfassung der Beschleunigung und Drehrate

Varianten	IB		
Eigenschaften	Neigung	Beschleunigung	Drehrate
Messbereich	-	±8 g	±250 °/s
Auflösung	-	0,244 mg	0,00875 %s
Temperaturkoeffizient	-	0,2 mg/K	0,005 °/s/K
Statische Genauigkeit¹	-	-	-
Dynamische Genauigkeit¹	-	-	-
In-Run Bias Stability	-	-	2,5 %h
Angle Random Walk (ARW)	-	-	0,1 °/√h
Interface	-	CAN, CANopen, SA	E J1939

Erfassung der Neigung (statisch und dynamisch), Beschleunigung & Drehrate

Varianten	ХВ			хс		
Eigenschaften	Neigung	Beschleunigung	Drehrate	Neigung	Beschleunigung	Drehrate
Messbereich	±90°/±180° (360°)²	±8 g	±250 %s	±90°/±180° (360°)²	±8 g	±250 %s
Auflösung	0,01°	0,244 mg	0,00875 °/s	0,01°	0,244 mg	0,00875 °/s
Temperaturkoeffizient	±0,005 °/K	0,2 mg/K	0,005 °/s/K	±0,0016 °/K	0,02 mg/K	0,005 °/s/K
Statische Genauigkeit¹	±0,3°	-	-	±0,1°	-	-
Dynamische Genauigkeit¹	±0,5°	-	-	±0,25°	-	-
In-Run Bias Stability	-	-	2,5 °/h	-	-	2,5 %h
Angle Random Walk (ARW)	-	-	0,1 °/√h	-	-	0,1 °/√h
Interface	CAN, CANopen, SAE J1939					

¹ inkl. kompensierte Querempfindlichkeit ² bis zu 2 Messachsen mit konfigurierbarer Orientierung

Technische Parameter

• Elektrischer Anschluss:

1 bzw. 2 Sensorsteckverbinder 5-polig M12, A-Codiert

• Schutzart:

IP6K7/IP6K9K, Arbeitstemperatur: -40 °C bis +85 °C

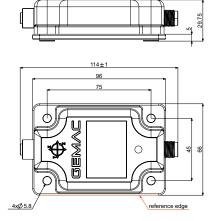
· Abmessungen und Gewicht:

114 mm x 66 mm x 30 mm, ca. 330 g

• Gehäusewerkstoff:

Zinkdruckguss, vernickelt

· Versorgungsspannung:


10 V bis 36 V (teils ab 7,5 V)

• Stromaufnahme bei 24 V:

ca. 12 mA (digital), max. 70 mA (analog)

Maßzeichnung

digital

Verfügbare Schnittstellen:

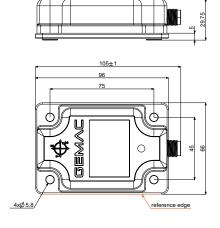
digital: • CAN 2.0 A und B (11- und 29-Bit-ID)

entsprechend ISO 11898-2

CANopen

entsprechend CiA DS-301, Profil nach CiA DSP-410

• SAE J1939


Prozessdaten konfigurierbar

analog: • Strom (4 ... 20 mA)

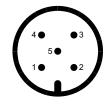
• Spannung (0 ... 10 V)

Sensor-Programmieradapter inkl. Kabel und PC-Software (PR-23999-10)

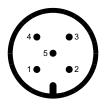
analog

PIN-Belegung

M12-Stecker-Belegung digital


PIN	Signal	Belegung
1	CAN_SHLD	Schirm
2	V+	Versorgungsspannung (+24 V)
3	V-	GND / 0 V / V-
4	CAN_H	CAN_H Busleitung
5	CAN_L	CAN_L Busleitung

M12-Buchse-Belegung digital


PIN	Signal	Belegung
1	CAN_SHLD	Schirm
2	V+	Versorgungsspannung (+24 V)
3	V-	GND / 0 V / V-
4	CAN_H	CAN_H Busleitung
5	CAN_L	CAN_L Busleitung

M12-Stecker-Belegung analog

PIN	Signal	Belegung
1	V+	Versorgungsspannung (+24 V)
2	B-OUT	Sensorausgang B
3	V- / GND	Versorgungsspannung-Masse / Sensor-Masse
4	A-OUT	Sensorausgang A
5	TEACH	Eingang für Nullpunkteinstellung

digital: Steckverbinder/Buchse - Ansicht von außen

analog: Ansicht von außen

Bestellinformationen

SAE J1939

Performance Klasse - B basic

ch L	Stat. Genauigkeit	±0,3°	±0,3°
	Dyn. Genauigkeit	±0,5°	±0,5°
m;	Produktlinie	GEMAC MOTUS®	GEMAC MOTUS®
/na	Spezifikation		
N Neigungssensoren dynamisch	Messbereich	+/- 90°	bis ±180° (360°)
o o o	Achsen	2D	1D
ens	CAN	PR-26014-30	PR-26010-30
gss	CANopen	PR-26114-30	PR-26110-30
ung	SAE J1939	PR-26714-30	PR-26710-30
Nei	Strom	PR-26414-00	PR-26410-00
	Spannung	PR-26514-00	PR-26510-00
X/I Inertiale Messeinheit/IMU	Stat. Genauigkeit	-	±0,3°
	Dyn. Genauigkeit	-	±0,5°
eit/	Produktlinie	GEMAC MOTUS®	GEMAC MOTUS®
ë	Spezifikation	ohne Neigung	mit Neigung
X/I ssse	Messbereich	bis ±180° (360°)	bis ±180° (360°)
∑ S	Achsen	6D	6D
iale	CAN	PR-26015-30	PR-26016-30
ert	CANopen	PR-26115-30	PR-26116-30
드	SAF J1939	PR-26715-30	PR-26716-30

PR-26715-30

PR-26716-30

Bestellinformationen

Performance Klasse - C classic

Stat. Genauigkeit	±0,1°
Dyn. Genauigkeit	±0,25°
Produktlinie	GEMAC MOTUS®
Spezifikation	
Messbereich	+/- 90°
Achsen	2D
CAN	PR-27014-30
CANopen	PR-27114-30
SAE J1939	PR-27714-30
Strom	PR-27414-00
Spannung	PR-27514-00

•
±0,25°
GEMAC MOTUS®
bis ±180° (360°)
1D
PR-27010-30
PR-27110-30
PR-27710-30
PR-27410-00
PR-27510-00

±0,1°

X/I Inertiale Messeinheit/IMU

Stat. Genauigkeit	±0,1°
Dyn. Genauigkeit	±0,25°
Produktlinie	GEMAC MOTUS®
Spezifikation	
Messbereich	bis ±180° (360°)
Achsen	6D
CAN	PR-27016-30
CANopen	PR-27116-30
SAE J1939	PR-27716-30